TABELA DE SELEÇÃO

BOMBA D'ÁGUA | FILTROS PARA PISCINAS | BOMBAS SUBMERSAS | PRESSURIZAÇÃO | COMBATE A INCÊNDIO

www.dancor.com.br

TABELA DE SELEÇÃO - 60 HZ

APLICAÇÕES RESIDENCIAIS

- ABASTECIMENTO DE RESIDÊNCIA
- REDES DE BAIXA PRESSÃO
- DRENAGEM E ESGOTAMENTO
- PISCINAS
- HIDROMASSAGEM
- SISTEMAS DE PRESSURIZAÇÃO
- POÇOS ARTESIANOS
- **JARDINAGEM**
- PAISAGISMO

APLICAÇÕES PREDIAIS

- ABASTECIMENTO DE PRÉDIOS
- DRENAGEM E ESGOTAMENTO
- PISCINAS

- HIDROMASSAGEM
- SISTEMAS DE COMBATE A INCÊNDIO
- POÇOS ARTESIANOS

- SISTEMAS DE PRESSURIZAÇÃO
- JARDINAGEM
- PAISAGISMO

APLICAÇÕES INDUSTRIAIS

- ABASTECIMENTO DE INDÚSTRIAS
- DESSALINIZAÇÃO
- OSMOSE REVERSA

- HEMODIÁLISE
- REFRIGERAÇÃO
- CALDEIRAS

APLICAÇÕES AGRÍCOLAS

- FERTI-IRRIGAÇÃO
- HIDROPONIA
- **PISCICULTURA**
- LAVAGENS DE ESTÁBULOS E MÁQUINAS
- ESGOTAMENTO DE SILOS, ESTÁBULOS, GRANJAS, ETC.

COMBATE A INCÊNDIO

INFORMAÇÕES GERAIS

A Tabela de Seleção tem como objetivo auxiliar na escolha correta de sua bomba ou filtro para piscina. Aqui você encontrará todos os produtos fabricados pela Dancor disponíveis, com suas aplicações e dados hidráulicos de vazão e altura manométrica.

Informações como curvas, dados dimensionais e componentes de cada bomba podem ser consultadas em nosso site:

www.dancor.com.br

Caso haja necessidade de produtos especiais que eventualmente não estejam nesta tabela, bem como aplicações específicas, por favor, consulte nosso Departamento Comercial.

AMS - Altura Manométrica de Sucção

AME - Altura Manométrica de Elevação

AMT - Altura Manométrica Total

A Altura Manométrica Total é calculada somando-se a Altura de Sucção + Altura de Recalque + Perda de Carga (para maiores informações, consultar páginas 32 e 33).

Procure o valor calculado (ou valor superior que mais se aproxima) na linha de Altura Manométrica Total (mca) na tabela, desça na coluna respectiva para encontrar o valor da vazão (m3/h). Após encontrar a vazão, verificar à esquerda da tabela o modelo e potência referente a melhor bomba que satisfaça sua necessidade.

LIMITES DE SUCÇÃO AO NÍVEL DO MAR:

• Centrífugas: Até 8 metros.

• Autoaspirantes: 9 metros (vertical) - 90 metros (horizontal) sem desnível

• Ejetoras: 9 a 50 metros

OBS: Para cada 1.000 metros de altitude haverá uma perda de 0,5 metros na sucção.

Selo Mecânico: Resiste à temperaturas de até 80°C. Opcional: 1- Selo Viton / 2- Carbeto de Silício (Sob consulta)

Motores Elétricos: Em todas as séries são descritas as características técnicas dos motores que acionam as bombas. Sob consulta poderão ser fornecidas, após avaliação e viabilidade, bombas com motores com características especiais, tais como: Monofásicos e Trifásicos em diversas potências e tensões, classe de isolamento, grau de proteção, frequência (Hz), pontas de eixo em aço inox, pinturas especiais, formas construtivas, etc.

Bombas com Mancal: A maioria de nossas bombas podem ser fornecidas, sob consulta, montadas em mancais, que permitem o acoplamento em motores à combustão, ou outras aplicações.

ÍNDICE

Linha Dancor PRATIKA Autoaspirante	
Linha Dancor PRATIKA Centrífuga	6
Série HAD-W7C - Centrífugas para Hidromassagem Autodrenante	7
Série CHS - Centrífugas para Hidromassagem e Produtos Químicos	7
Série PF - Autoescorvantes com pré-filtro para piscinas	8
Série DFR - Filtros para piscinas	8
Série MS - Centrífugas Multiestágio	9
Série CAP - Centrífugas de Alta Pressão - Booster	10
Série EP - Bombas Ejetoras para Poços	11
Bombas Periféricas DP-60 / DP-80	12
Bomba Autoaspirante Inox AI-2	12
Série SPP - Submersas para Poços Profundos 4"	13
MDS - Motor Dancor Submerso	14
Caixa de Controle, Quadro de Comando e Smart QC (para motores MDS)	15
Série SL - Submersas para Poços Profundos 3"	16
DS-4 - Submersível para Drenagem	17
DS-9 - Submersível para Drenagem	17
Série SDE/SDE Óleo - Submersíveis para Drenagem e Esgotamento	18
DS 56-40 - Submersíveis para Drenagem e Esgotamento	18
DS 76-50 - Submersíveis para Drenagem e Esgotamento	18
Série AAE - Autoescorvantes para Esgotamento	19
Série VAS - Vertical para águas servidas	19
Série CAM 4 Polos - Centrífugas de Aplicações Múltiplas	20
Série CAM 2 - Centrífugas de Aplicações Múltiplas	20
Série CAM de 1/4 a 10 cv - Centrífugas de Aplicações Múltiplas	21
Série CAM de 4 a 75 cv - Centrífugas de Aplicações Múltiplas	22/23
Série CAM Incêndio	24/25
Série TDV - Tanques de Pressão (Sistemas de Pressurização)	26/27
Sistema de Pressurização com Inversor de Frequência	28
Smart Jet - Sistemas de Pressurização	29
Bombas com Mancal	30
Dimensionamento - Bombas Centrífugas	31
Dimensionamento - Bombas Autoaspirantes	31
Dimensionamento - Bombas Ejetoras	32
Dimensionamento - Bombas Submersas	32
Tabela Conversora de Unidades de Medidas	33
Tabela de Perda de Carga em Tubulações	34
Tabela de Perda de Carga em Conexões	35
Tabela de Compatibilidade Química	36/37
Tabela de Bitolas de Fios	38

Linha Dancor PRATIKA

Aplicações: Residencial | Industrial | Agrícola

Produzidas em Termoplástico de Engenharia • Motor elétrico 2 polos | 3.500 rpm | 60 Hz • Protetor térmico contra sobrecarga até 1cv Grau de proteção: IP 21 • Isolamento: Classe "B" • Selo mecânico: Ø ½" (AP-2R e CP-4) | Ø 5/8" (AP-3C e CP-6R) • Opcional: Ponta do eixo em aço inox. Suporta temperaturas até 80°C

AUTOASPIRANTES

Ideal para redes de baixa pressão (rede hidráulica), poços tubulares e de ponteiras até 9 metros.

AP-3

4P-3C 2c\

Modelo			tro Jmr)	AMT	Altura N	1anométric	a Total em	metros de (Coluna de Á	igua (mca)	- Não estão	incluidas a	as perdas p	or atrito
Monofásico	Pot. (cv)	Sucção/Elevação (bsp)	âmet or (m	máx.	4	8	12	16	18	20	22	24	28	32
127 ou 220V	(01)	(230)	rote	(mca)					Vazão	(m³/h)				
	1/4		95,0	24	3,5	3,3	3,1	2,2	1,7	1,2	0,5			
AP-2R	1/3	3/4"	102,0	27	3,6	3,5	3,4	2,8	2,3	1,8	1,3	0,7		
	1/2		110,0	34		3,6	3,5	3,4	3,4	3,3	3,0	2,6	1,7	0,6

Mod	lelo			tro nm)	AMT		Altura	Manor	nétrica '	Total en	metro	s de Col	una de A	Água (m	ıca) - Nã	o estão	incluida	as as per	das por	atrito	
Monofásico	Trifásico	Pot. (cv)	Sucção/Elevação (bsp)	l e c	máx.	7	8	9	10	15	20	25	30	35	40	45	50	55	60	65	70
127 ou 220V	220/380V	(CV)	(636)	Diâ roto	(mca)							,	Vazão	(m³/h)							
		1/3		102,0	33	3,3	3,3	3,2	3,2	3,0	2,2	1,2	0,4								
		1/2		113,0	41	3,4	3,3	3,3	3,2	3,1	3,0	2,4	1,6	0,8	0,1						
AP-3C		3/4	3/4"	122,0	49	3,4	3,4	3,4	3,3	3,2	3,1	3,0	2,9	2,8	2,1	0,3					
	AP-3C*	1,0		130,0	57	3,5	3,4	3,4	3,4	3,3	3,2	3,1	3,1	2,8	2,7	1,4	0,8	0,2			
	AP-3C	2*		129,0	73	3,5	3,5	3,5	3,5	3,4	3,4	3,4	3,4	2,9	2,8	2,3	2,0	1,7	1,2	0,6	0,2

^{*} OBS: Intermediária em alumínio

CENTRÍFUGAS

Para captação de água de cisternas ou reservatórios até 8 metros.

CP-4R/C

CP-6I

Mod	delo	Pot.	Tubulação	tro mm)	AMT		Altı				de Coluna rdas por at		nca)	
Monofásico	Trifásico	(cv)	Sucção/Elevação	iâme tor (n	máx.	6	8	10	12	14	16	18	20	22
127 ou 220V	220 ou 380V		(bsp)	<u> </u>	(mca)				\	/azão (m³/h	1)			
		1/4		95,0	18	7,6	6,6	5,5	4,3	3,0	1,3			
CP-4C / CP-4R		1/3	VIDE ABAIXO	102,0	19	7,7	6,9	6,0	5,0	3,9	2,6	0,9		
	CP-4 / CP-4R	1/2		110,0	23	8,4	7,9	7,2	6,5	5,6	4,5	3,3	1,8	0,4

^{*} CP-4C Para tubos soldáveis: Interno -25mm e Externo - 32mm / CP-4R para tubos roscáveis: Sucção e Elevação - 3/4" (bsp)

Mod	delo		Tubulação	iro mu)	AMT	Altu	ra Man	ométric	a Total	em met	ros de (Coluna	de Água	(mca)	- Não e	stão inc	luidas a	as perda	s por at	rito
Monofásico	Trifásico	Pot. (cv)	Sucção/Elevação	âmet or (n	máx.	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34
127 ou 220V	220/380V	(60)	(bsp)	Diâ roto	(mca)							Va	zão (m³,	/h)						
CP-6R	CP-6R*	3/4	1	130,0	32		7,3	6,9	6,6	6,2	5,7	5,3	4,8	4,2	3,5	2,8	2,0	1,1		
Cr-on	Cr-ok	1		136,0	35	7,7	7,4	7,1	6,7	6,4	6,0	5,6	5,2	4,7	4,3	3,7	3,2	2,5	1,8	0,9

^{*} OBS: Intermediária em alumínio

^{*} Monofásico bivolt (110/220V). Rotor em alumínio.

Bombas Centrífugas para Hidromassagem

Aplicações: Residencial | Predial

HAD-W7C

Bombas Centrífugas para Hidromassagem Auto-drenante (HAD) em Termoplástico de Engenharia

- Monobloce
- Motor elétrico 2 polos, 3.500 rpm, 60 Hz com protetor térmico somente nas potências de 1/3cv a 3/4cv
- Grau de proteção IP21
- Isolamento classe "B"
- Selo mecânico Ø 1/2"

ACESSÓRIOS:

Uniões soldáveis; Em termoplástico de engenharia; Vedação por o'ring; facilitam a instalação e manutenção das bombas HAD-W7C

União soldável Fêmea 50mm x Macho-Fêmea 50-40mm, disponível em embalagens com 06 unidades.

Códigos: Unitário - 60550274 / Kit 6 unidades - 60550275

União soldável Fêmea 50mm x Fêmea 50mm, disponível em embalagens com 06 unidades.

Códigos: Unitário - 60550282 / Kit 6 unidades - 70570122

Modelo			etro (mm)	AMT	Altura Manon	nétrica Total em	metros de col	una de água (m	ca) - Não estão	incluídas as pe	rdas por atrito
Monofásico	Potência (cv)	Sucção / Elevação (para tubos soldáveis)	F L	máx.	2	4	6	8	10	12	14
127V ou 220V		,	Diâ	(mca)				VAZÃO m³∕h			
	1/3		81,0	10	14,1	11,2	7,9	3,8			
1145 14/76	1/2	Interno = 40mm	92,0	13	16,0	13,9	11,4	9,4	6,1	2,2	
HAD - W7C	3/4	Externo = 50mm	07.0	14	16,4	14,2	12,1	10,0	7,2	3,8	
	1		97,0	15	17,1	14,7	12,5	10,3	8,0	5,4	2,0

CHS-17 / 22

Bombas Centrífugas para Hidromassagem e Produtos Químicos*

- Monobloco
- Motor elétrico 2 polos, 3.500 rpm, 60 Hz
- Bocais sem rosca
- Grau de proteção IP21
- Isolamento classe "B"
- Selo mecânico Ø 3/4" tipo 16

Outras aplicações: Opera com água, óleos minerais, vegetais e animais, ácidos compatíveis com as matériasprimas constantes de sua fabricação - Sob consulta

ACESSÓRIOS

Uniões soldáveis; Em termoplástico de engenharia; Vedação por o'ring, facilitam a instalação e manutenção das bombas CHS-17.

União soldável Fêmea-Macho 40-50mm x Fêmea 50mm, disponível em embalagens com 06 unidades.

Códigos: Unitário - 60550281 / Kit 6 unidades - 70570121

Mod	delo	Pot.	Tubu	ılação	Diâmetro rotor (mm)	AMT			Altura	Manomét Não e			s de Colur erdas por a	U	a (mca)		
Monofásico	Trifásico	(cv)	Sucção	Elevação	iâme tor (máx. (mca)	2	4	6	8	10	12	14	16	18	20	22
127V/220V	220V/380V		(bsp)	(bsp)	0 5	(IIICa)					V	azão (m³/l	า)				
		1/4			92,0	11	12,9	11,0	8,6	5,7	2,0						
	CHS-17	1/3			96,0	13	13,0	11,4	9,6	7,4	4,7	0,7					
		1/2			100,0	15		13,7	12,0	10,1	7,9	5,2	1,7				
CHS-17		3/4		mm Jável	100,0	17			17,3	16,1	14,5	12,2	7,3	1,0			
	CHS-17	1	3010	iavei	107,0	20				19,2	17,3	14,8	11,2	6,4	2,4		
		1½			114,0	22				21,1	20,8	19,5	17,8	15,5	10,9	2,2	
		2			117,0	22					21,9	21,5	20,3	17,2	13,8	7,9	
		1½				19				24,1	21,5	18,8	15,8	12,5	8,1		
CHS-22	CHS-22	2		mm Jável	121,0	21						26,3	22,6	18,8	14,7	9,4	
	0113 22	3	3010	iavci		23							32,0	28,1	23,4	17,4	8,5

^{*} Verificar tabela de compatibilidade química nas páginas 36 e 37.

Filtros e Bombas para Piscinas

Aplicações: Residencial | Predial

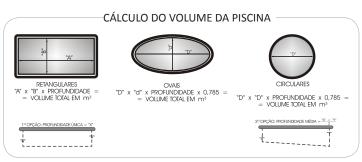
Bombas Centrífugas Auto-escorvantes com Pré-filtro (PF)

- Monobloco
- Motor elétrico 2 polos, 3.500 rpm, 60 Hz
- Bocais com uniões incorporadas
- Selo mecânico Ø 3/4" tipo 16

Outras aplicações: Pré-filtragem em sistemas industriais e agrícolas (avicultura, aquicultura, etc.)

ACESSÓRIOS:

Uniões soldáveis; Em termoplástico de engenharia; Vedação por o'ring; facilitam a instalação e manutenção das bombas PF-17 e dos filtros DFR


					Diâmetro	AMT	Altura M	anométri	ca Total e	m metros	de coluna	de água	(mca) - Nã	ão estão ii	ncluídas a	s perdas p	or atrito
Monofásico 127V / 220V	Trifásico 220V / 380V	Pot. (cv)	Sucção	Elevação	rotor	máx.	2	4	6	8	10	12	14	16	18	20	22
		(51)			(mm)	(mca)					٧	⁄AZÃO m³∕	'h				
		1/4			92,0	11	12,0	10,3	8,2	5,6	1,8						
PF-17	PF-17	1/3			96,0	13		11,4	9,7	7,7	5,2	1,8					
		1/2			100,0	15		11,7	10,3	8,5	6,3	3,8					
		3/4		mm dável	100,0	16		15,7	15,1	13,7	11,1	8,3	4,5				
DE 17	PF-17	1	3010	uavei	107,0	20		17,3	17,0	15,7	14,0	11,9	9,0	5,3	2,4		
PF-17		1½			114,0	21		18,1	17,9	17,6	16,7	15,4	13,7	11,0	6,8		
		2			117,0	22			18,8	18,2	17,6	16,8	15,9	14,7	12,9	7,3	
		1½	60	mm		20					21,9	19,0	16,0	12,6	8,2		
PF-22	PF-22	2		dável	121,0	22						26,4	22,7	18,9	14,7	9,5	
		3	3010	uavei		23						33,0	31,8	27,9	23,3	17,4	8,3

IMPORTANTE: Não utilizar as bombas em alturas inferiores àquelas limitadas pela linha demarcativa, sob o risco de sobrecarga no motor elétrico, ocasionando a perda da GARANTIA

Linha DFR

- Válvula seletora de 6 posições de operação, com manômetro de controle e visor de retrolavagem
- Tanque produzido pelo processo de rotomoldagem com parafusos prisioneiros em aço inoxidável
- Sistema drenante e meio filtrante (areia sílica) projetados segundo a ABNT
- Todos os componentes funcionais são confeccionados em termoplástico de engenharia
 - Taxa de Filtração: 880 1450m³/(m² x dia)

		Área	Во	omba PF Dancor	PRATIKA / Auto	-escorvante cor	n Pré-Filtro	Ter	npo de circu	ılação em ho	ras	Carga de
MODELO	Ø	Filtrante	МОГ	DELO	Potência	Vazão	Altura Manométrica	6	8	10	12	areia
	cm	m²	Monofásico	Trifásico	(cv)	Nominal m³/h	Total na Vazão Nominal (mca)	\	Volume da p	iscina em m	3	(kg)
DFR - 11	28	0,06			1/4	2,2	9,8	13,2	17,6	22,0	26,4	14
DFR - 12	30	0,07			1/4	2,7	9,6	16,2	21,6	27,0	32,4	28
DFR - 12-4*	30	0,07			1/2	3,8	10,9	22,8	30,4	38,0	45,6	28
DFR - 15	20	0.12			1/3	4,0	10,7	24,0	32,0	40,0	48,0	45
DFR - 15-7*	39	0,12	PF - 17 M		4 /2	7,0	9,6	42,0	56,0	70,0	84,0	45
DFR - 19	49	0.10			1/2	7,0	9,6	42,0	56,0	70,0	84,0	100
DFR - 19-10*	49	0,18		PF - 17 T	2/4	9,8	11,3	58,8	78,4	98,0	117,6	100
DFR - 22		0.25			3/4	10,0	11,5	58,8	78,4	98,0	117,6	140
DFR - 22-11*	56	0,25			1	11,0	12,6	66,0	88,0	110	132,0	140
DFR - 2-22**		0,50	PF - 22 M	PF - 22 T	1½	19,6	10,5	117,6	156,8	196,0	235,2	280
DFR - 24		0.20	PF - 17 M	PF - 17 T	1	11,0	12,6	66,0	88,0	110,0	132,0	160
DFR - 24-13*	61	0,29	PF - 17 IVI	PF - 17 I	1½	12,7	14,7	76,2	101,6	127,0	152,4	160
DFR - 2-24**		0,58	PF - 22 M	PF - 22 T	2	22,0	12,3	132,0	176,0	220,0	264,0	320
DFR - 30		0.45	DE 47.14	DE 47.T	1½	16,9	8,8	101,4	135,2	169,0	202,8	240
DFR - 30-18*	76	0,45	PF - 17 M	PF - 17 T	2	18,4	7,6	110,4	147,2	184,0	220,8	240
DFR - 2-30**		0,90	PF - 22 M	PF - 22 T	3	33,0	12,0	195,6	260,8	326,0	391,2	480

Todos os filtros são equipados com Bombas Dancor PF-PRATIKA - Válvula seletora ø bocais PF-17 50mm e PF-22 60mm. * Modelos de filtro com maior vazão. ** Sistema de bateria com 02 tanques.

Série MS / Bombas Centrífugas Multiestágio

Aplicações: Residencial | Predial | Industrial | Agrícola

4 MS

- Flange de sucção, difusor e intermediária em ferro fundido
- Rotores em liga de alumínio-silício ou bronze

- 1cv a 3cv (somente série 4) eixo tipo "Jet Pump"com flange FC149
 - Selo mecânico Ø 3/4" tipo 16 e 5/8" tipo 01/21 Grau de proteção IP 21

 - Isolamento classe "B"
- 3cv eixo especial com flange FC149 Selo mecânico Ø 5/8" tipo 06 e 01/21 Grau de proteção IP 21

 - Isolamento classe "B"

- 4 e 7,5cv eixo e flange (FC149) na norma Nema JM
 Selo mecânico Ø 1½" tipo 21 e 5/8" tipo 01/21
 Grau de proteção IP 55

 - Isolamento classe "F"
- 10,0cv e 15,0cv eixo e flange (FC184) na norma JM
 Selo mecânico Ø 1¼" tipo 21 e 5/8" tipo 01/21
 Grau de proteção IP 55

 - Isolamento classe "F"
- Opcional: Com manômetro

		Tub	ulação	0 8	E AM	_		,	Altura	Man	ométr	rica Tot	al em	met	ros de C	Coluni	ıa de i	Água (m	nca) - N	 Ião est	ão in	cluida	as as i	perda	s por	atrito)		
Modelo	Pot.		Elevação	netr	AIVI má:		15	20	25	30	35				55 60			0 75	80		90				_		130	140	150
	(cv)	(bsp)	(bsp)	Diâmetro	[mc													(m³/h)											
4 MS 02	1,0				33	7,3	6,4	5,4	4,1	2,4			Т				Т												
4 MS 03	1,5				51			7,6	7,0	6,3	5,5	4,5 3	,3 1	1,1															
4 MS 04	2,0	1"	2/4//	100	_ 68						6,3	5,9	,4 4	4,8	4,2 3,	4 2,	,3												
4 MS 06	3,0	1	3/4"	106,	104	4							6	5,9	6,6 6,	3 5,	,9 5	,6 5,2	4,7	4,3	3,8	3,1	2,3						
4 MS 08	4,0				130	5									7,0 6,	7 6,	,5 6	,2 6,0	5,7	5,4	5,2	4,9	4,5	4,2	3,8	3,0	1,8		
4 MS 09	5,0				153	2											6	,7 6,5	6,3	6,0	5,8	5,6	5,3	5,0	4,7	4,1	3,4	2,4	0,9
				_																									
	Pot.	Tubul	ação	Diâmetro rotor (mm)	AMT			Altı	ura M	anom	étrica	Total	em m	etros	s de Col	una d	de Ág	ua (mca	a) - Não	estão	incl	uidas	as pe	rdas	por at	trito	_		
Modelo	(cv) S		Elevação	âme or (r		10 15	20	25	30	35	40 4	45 50) 55	5 6	0 65	70	75	80	85 90	95	100	0 105	5 110) 115	120	125	130	135	140
	(- ,	(bsp)	(bsp)	rot Tot	(mca)		, ,									Vaz	ão (n	n³/h)			,					,			
9 MS 02	3,0				52 1	.2,7 11,9	11,1	10,1	9,0	7,8	6,3	1,3 1,	4																
9 MS 03	5,0	1½"	1"	137,0	81		12,9	12,4	11,9	11,3	10,7	0,0 9,	3 8,4	4 7,	,5 6,5	5,2	3,6												
9 MS 04	7,5	1/2	1	137,0	111						1	2,0 11	.6 11,	,1 10),7 10,2	9,6	9,0	8,3	7,5 6,	6 5,5	4,1	1 2,3	:						
9 MS 06	10,0*				153											11,5	11,2	10,9 1	0,5 10	,1 9,7	9,3	8,9	8,4	1 7,9	7,4	6,8	6,2	5,5	4,7
		1 -			<u> </u>														,		- 41								
	Pot.	-	Tubulação 		ا ⊃ ن	AMT						_			etros de		_				Т			Ť	-			_	
Modelo	(cv)	Sucç		ação	iâm tor (máx.	75	80	8	35	90	95	1	.00	105	110			120	125	13	30	135	14	0	145	150	1	.55
		(bs)	o) (b:	sp)	□ p	(mca)											Vazã	o (m³/h)		_								
10 MS 04	7,5	1½	" 1	<i>"</i> 1	143,0	140	10,0	9,6	9),1	8,7	8,2		7,7	7,2	6,6			5,3	4,5	3,		2,9						
10 MS 05	10,0*	•			-,-	160					10,5	10,3	. 9	9,7	9,3	8,8	8	8,3	7,7	7,1	6,	,5	5,7	4,	9	4,0	2,8		L,5
		Tub	ulação		9 E	A B 4T			Altı	ıra M	anom	étrica '	Total (em n	netros d	le Col	luna (de Água	(mca)	- Não	estã	o incli	uidas	as pe	rdası	por a	trito		
Modelo	Pot.	Sucção	T .	1 5	otor (mm	AMT máx.	15	25	30	_			50		5 60			0 75		85	90			÷			120	130	140
	(cv)	(bsp)	(bsp)	,	Diametro otor (mm)	(mca)							1					ão (m³/		1	1					- 1			
11 MS 02	3,0			133(1)) / 121(1)	49	18.6	16,2	14,7	7 12.	9 10,	6 6,9	Τ		\top	1				Т	T	\top	Т			T	Т		
11 MS 03	5,0) / 121(2)			17,3	1		8 14,	-	12,	.8 11	1,3 9,3	6,0	.0												
11 MS 04	7,5	1½"	1") / 121(2)			,-	1 - 2/	1	17,		1 '	2 15				3,5 12,	5 11,4	9,9	7,7	7 2,	8						
11 MS 05	10,0*) / 121(2)								,		17,:		·	5,2 15,	- '	1	- 1	- '		2.4 1	1.5 1	10,4	6,8		
11 MS 06	10,0*) / 121(4)												,. -	,= ==,		1 - 1,0	==,			,			10,8	8.8	5,5
						_		_																					
	Dot		Tubulação		Diâmetro rotor (mm)	AMT _			Altur	a Mar	nomét	trica To	tal er	n me	tros de	Colu	na de	Água (mca) -	Não e	stão	inclui	das a	s per	das po	or atr	ito		
Modelo	Pot.	1 6	ção Elev	ação	ame or (r	máx.	25	30	35	40	4	5 5) !	55	60	65	70	75	80	85	9	0 !	95	100	105	11	0 1	15	120
	(,	(bs	sp) (b	sp)		mca)											Vazã	o (m³/h)										
17 MS 02	7,5					64	21,4	20,9	20,2	19,	5 18	,7 17	,6 1	5,2	11,2														
17 MS 03	10,0	* 2	" 1	½" 1	135,0	95							1	9,4	18,7	18,0	17,1	. 16,2	15,0	13,5	11	.,0							
17 MS 04	15,0	*				123											19,2	18,7	18,2	17,6	16	,9 1	6,1	15,3	14,2	12	,8 10),8	2,7
			Tubul ~	.	2 1	ē				۸ الحاد		amít.	00 T	tal -	oo na -+	o el -	Celi	22 d - K	aua (:		186	c+~	n al···	doc -	ne -	las :-	w m4**	_	
	Po	t	Tubulaçã		Diâmetro	rotor (mm)	AMT				_				m metro	_			•		_							_	46
Modelo	(cv	,) Su	-	vação	iam)		máx.		0	55	60) 6	5	70	75	8	30	85	90	95	1	.00	105	1:	10	120	130) 1	L40
			osp) (I	osp)			(mca)											Vazão (m³/h)										
18 MS 02	7,!				158(75	19	9,4	17,3	14,			6,9															
18 MS 03*	10,	-	2" 1		153(2)/		110					20	,7	19,5	18,3	16	5,8	15,2	13,4	11,3		3,5	3,8						
18 MS 04*	15,	.0			140(1)/	158(3)	145													19,4	1	8,4	17,4	16	,2	13,7	10,	5 5	5,9

^{*}Modelo trifásico 220/380/440/760V

Bombas Booster / Centrífugas Multiestágio

Aplicações:

Residencial | Predial | Agrícola | Industrial | Incêndio

Booster / BHD

Série CAP (booster) Bombas Centrífugas Multiestágio: Alta Pressão CAP-BHD: Para serviços pesados (Heavy Duty)

- Predial: abastecimento e combate a incêndio (bombas "jockey").
- Industrial: separação de partículas por osmose reversa (em equipamentos de dessalinização, desmineralização e hemodiálise), equipamentos de água gelada, lavagem de máquinas e veículos, etc.
- Agrícola: injeção de insumos em linhas de pivot (ferti-irrigação e aplicações de defensivos agrícolas), aspersão por micro-gotejamento e sistemas de climatização por névoa (avicultura), lavagem de máquinas, etc.

OBS: Consulte a tabela de compatibilidade química entre a bomba e o fluído bombeado nas pág. 34 e 35.

Leitura dos códigos para todos os modelos (séries)

EX: 8.3 B 20 - N° de estágios Booster Série / Vazão média em m³/h

	Мс	odelo		Tubi	ulação	etro	AM1	-	P	ltura I	Mano	métrio	a Tota	ıl em ı	netro	s de C	oluna	de Ág	ua (m	ıca) - N	lão es	tão in	cluidas	as pe	rdas p	or atri	to	
Monofásico	Pot.	Monofásico	Pot.	Suc. (bsp)	Elev.				21	42	49	63	70	84	91	98	112	119	133	140	154	168	175	182	203	210	215	235
Trifásico	(cv)	Trifásico	(cv)	l s ë	H 4		(mca)									Va	zão (n	n³/h)									
1.1-B-19	3/4	1.1-BHD-19	1				147	1,9	7 1,83	1,63	1,56	1,43	1,37	1,22	1,14	1,05	0,85	0,73	0,4	0,26	5							
1.1-B-23	1	1.1-BHD-23	1 ½	1"	1"	75,4	177	2,0	1,90	1,69	1,63	1,49	1,43	1,30	1,24	1,18	1,06	1,00	0,80	0,78	0,50	0,3	0,15					
1.1-B-29	1 ½	1.1-BHD-29	2	1	1	/5,4	225	2,0	3 1,95	1,76	1,70	1,58	1,52	1,41	1,35	1,30	1,19	1,14	1,04	1,00	0,89	0,7	5 0,70	0,62	0,37	0,26	0,18	
1.1-B-34	2	1.1-BHD-34	3				261	2,1	3 1,99	1,81	1,75	1,63	1,58	1,50	1,33	1,29	1,20	1,16	1,08	3 1,04	1 0,9	0,8	7 0,82	0,77	0,60	0,56	0,50	0,26
	Mod	delo		Tubula	ıção	ro (mr	máx. ca)		Al	tura M	lanon	nétrica	Total	em m	etros	de Co	luna c	le Águ	a (mo	a) - Nâ	io est	ão inc	luidas	as per	das po	r atrite	D	
Monofásico	Pot.	Monofásico	Pot.	. (a	. (d	Diâmetro otor (mm)		7 2	1 35	42	56	63	70 8	34 9	1 98	112	119	126	133	140 1	47 1	54 16	8 182	196	203 2	17 23	1 23	8 245
Trifásico	(cv)	Trifásico	(cv)	Suc. (bsp)	Elev. (bsp)	Diâm rotor	AMT (m										Vaz	ão (m	/h)									
2.1-B-11	3/4	2.1-BHD-11	1				100	3,6 3	,3 3,0	2,8	2,5	2,2	2,0 1	,5 1,	1 0,!	5												
2.1-B-14	1	2.1-BHD-14	1½	1"			124	3,5 3	,3 3,1	2,9	2,7	2,5	2,4 2	2,1 1,	9 1,0	1,0	0,6											
2.1-B-17	1½	2.1-BHD-17	2	1	1"	75,4	154	3,5 3	,3 3,1	3,0	2,8	2,7	2,6 2	2,3 2,	2 2,:	1,8	1,6	1,4	1,2	1,0),6							
2.1-B-21	2	2.1-BHD-21	3				187	3,6 3	,4 3,3	3,2	3,1	3,0	2,9 2	2,7 2,	6 2,	2,3	2,2	2,1	2,0	1,8	1,7	,5 1,	1 0,5					

2.1-B-28*	3	2.1-BHD-28	8 4	1½	"			250	3,6	5 3,	5 3	3,3	3,3	3,2	3,1	3,0) 2,9	9 2	,8	2,8	2,6	2,5	2,4	2,3	3 2,	3 2	,2	2,1	1,9	1,6	1,4	1,2	2 0	9 0	,6 (0,4	0,2
		,																																	\equiv		_
	Mo	delo		Tubu	lação	5 E	×.				Alt	ura N	/land	mét	rica	Tota	l em	met	ros c	de Co	oluna	de /	Água	(mc	a) - I	Vão e	estão	incl	uida	s as	perd	las p	or at	rito			
Monofásico	Pot.	Monofásico	Pot.	. G	> G	Diâmetro rotor (mm)	AMT máx. (mca)	7	14	21	28	35	42	49	56	63	70	77	84	91	98	105	112	119	126	133	140	147	154	161	168	175	182	189	196	203	210
Trifásico	(cv)	Trifásico	(cv)	ns sq)	Elev. (bsp)	Diâ	AM z														Va	azão	(m³/	/h)													
3.2-B-09	3/4	3.2-BHD-09	1				81	4,6	4,4	4,1	3,8	3,5	3,1	2,8	2,3	1,9	1,3	0,6														Π					
3.2-B-11	1	3.2-BHD-11	1½	1"			99	4,6	4,4	4,2	4,0	3,7	3,5	3,2	2,9	2,6	2,3	1,9	1,4	0,9																	
3.2-B-15	1½	3.2-BHD-15	2	1	1"	75,4	136	4,2	4,1	4,0	3,8	3,7	3,6	3,4	3,2	3,1	2,9	2,7	2,5	2,2	2,0	1,7	1,4	1,1	0,7	0,3											
3.2-B-20	2	3.2-BHD-20	3				178	4,7	4,6	4,5	4,3	4,2	4,1	4,0	3,8	3,7	3,5	3,4	3,2	3,1	2,9	2,7	2,6	2,4	2,2	2,0	1,8	1,5	1,3	1,0	0,6						
3.2-B-25*	3	3.2-BHD-25	4	1½"			218	4,7	4,6	4,5	4,4	4,3	4,2	4,1	4,0	3,9	3,7	3,6	3,5	3,3	3,2	3,1	2,9	2,8	2,6	2,5	2,3	2,1	2,0	1,8	1,6	1,4	1,1	0,9	0,7		
5.4-B-07	3/4	5.4-BHD-07	1				45	6,8	6,1	5,3	4,4	3,2	1,3																								
5.4-B-09	1	5.4-BHD-09	1½	1"			57	6,9	6,4	5,8	5,1	4,3	3,4	2,3																							
5.4-B-12	1½	5.4-BHD-12	2	1	1"	72,0	76	7,2	6,8	6,3	5,8	5,3	4,8	4,2	3,6	2,8	1,6																				
5.4-B-16	2	5.4-BHD-16	3		1	/2,0	101	7,3	7,0	6,7	6,3	5,9	5,6	5,2	4,8	4,3	3,8	3,3	2,6	1,9																	
5.4-B-20*	3	5.4-BHD-20	4	1½"			127	7,4	7,1	6,8	6,5	6,2	6,0	5,6	5,3	5,0	4,7	4,3	3,9	3,5	3,1	2,6	2,0	1,3													
5.4-B-25	4	5.4-BHD-25	5	1/2			159	7,4	7,2	7,0	6,7	6,5	6,3	6,0	5,8	5,5	5,3	5,0	4,7	4,4	4,1	3,8	3,4	3,1	2,7	2,2	1,8	1,2	0,5								
8.3-B-07	1	8.3-BHD-07	1½				55	9,3	8,6	7,8	6,8	5,7	4,4	2,6																							
8.3-B-09	1½	8.3-BHD-09	2	1"			70	9,3	8,7	8,1	7,4	6,7	5,9	5,0	3,9	2,4																					
8.3-B12	2	8.3-BHD12	3		1"	72,0	95	8,9	8,5	8,0	7,6	7,1	6,6	6,0	5,4	4,7	4,0	3,1	2,2	0,9																	
8.3-B-16*	3	8.3-BHD-16	4		1	/2,0	127		8,9	8,6	8,2	7,9	7,5	7,1	6,8	6,3	5,9	5,4	4,9	4,4	3,8	3,1	2,4	1,5													
8.3-B-20	4	8.3-BHD-20	5	1½"			162		9,7	9,4	9,2	8,9	8,7	8,4	8,1	7,8	7,5	7,2	6,8	6,5	6,1	5,7	5,3	4,8	4,4	3,8	3,2	2,4	1,5								
8 3-R-25	5	8 3-BHD-25	71/2				202		10 1	99	97	95	93	91	29	87	85	82	80	7.8	75	73	70	67	64	61	5.8	5.5	51	47	43	3.8	33	25			

																							-								
	. IV	lodelo		Tubu	lação	etro (mm)	náx. a)			Altur	a Mai	nomė	trica	Total	em n	netros	s de C	olun	a de A	Água (mca)	- Não	estã	o inc	luida	s as p	erdas	por	atrito)	
Monofásico	Pot.	Monofásico	Pot.	ção p)	evação (bsp)		_ 0	7	14	21	28	35	42	49	56	63	70	77	84	91	98	105	112	119	126	133	140	147	154	161	168
Trifásico	(cv)	Trifásico	(cv)	Sucção (bsp)	Elevaçi (bsp)	Diâm rotor	AMT (m											V	azão	(m³/h	1)										
15.6-B-05	2	15.6-BHD-05	3,0				42	18,7	16,0	12,8	8,9	4,4																			
15.6-B-07	3	15.6-BHD-07	4,0				60	19,8	17,9	15,8	13,5	10,8	7,8	4,7	1,5																
15.6-B-10	4	15.6-BHD-10	5,0	1½"	1½"	79.2	85		19,1	17,6	16,0	14,4	12,5	10,6	8,6	6,5	4,4	2,3													
15.6-B-12	5	15.6-BHD-12	7,5	1/2	1/2	79,2	99		20,3	19,2	18,0	16,7	15,3	13,8	12,1	10,3	8,3	6,3	4,2	2,1											
15.6-B-17	7½	15.6-BHD-17	10,0 *				142				20,0	19,2	18,4	17,5	16,6	15,6	14,5	13,3	12,0	10,7	9,2	7,7	6,2	4,6	3,1	1,7					
15.6-B-22	10 +						175								18,0	17,2	16,5	15,7	14,8	13,9	12,9	11,9	10,8	9,6	8,4	7,1	5,9	4,6	3,4	2,2	1,1

17,7 16,9 16,1 15,3 14,5 13,5 12,6 11,5 10,4 9,2 8,0 6,6 5,3 3,8 2,4 0,9

IMPORTANTE: Não utilizar as bombas em alturas inferiores àquelas limitadas pela linha demarcativa, sob o risco de sobrecarga no motor elétrico, ocasionando a perda da GARANTIA

2,0

16,8 16,3 15,9 15,4 15,0 14,5 14,0 13,5 13,0 12,4 11,9 11,3 10,6 10,0 9,3 8,6 7,9 7,1 6,3 5,3 4,4

17,8 | 17,2 | 16,7 | 16,1 | 15,5 | 14,9 | 14,3 | 13,6 | 12,9 | 12,2 | 11,5 | 10,7 | 9,9 | 9,0 | 8,1 | 7,2 | 6,2 | 5,2 | 4,1 | 3,0 | 1,9 | 0,8

11.2-B-07

11.2-B-09 11.2-B-12

11.2-B-14

11.2-B-20

11.2-B-27 10 *

2 11.2-BHD-07

11.2-BHD-09

4 | 11.2-BHD-12 | 5

11.2-BHD-14

7½ 11.2-BHD-20 10 °

3

7½

1½" 1½" 79.2 57

76

99

116

165

17,2 15,7 14,0 11,9 9,4 6,5 3,4 0,5 17,6 16,4 15,2 13,8 12,3 10,6 8,8 6,7 4,5 2,1

17,5 16,6 15,7 14,7 13,7 12,5 11,3 10,0 8,5 7,0 5,3 3,7

^{*} Bombas 2.1-B-28, 3.2-B-25, 5.4-B-20 E 8.3-B-16 de 3cv possuem sucção de 1"

⁺ TENSÕES: Trifásicos a partir de 10cv - 220/380/440/760

Bombas Ejetoras/Injetoras para Poços

Aplicações: Residencial | Agrícolas

Carcaça e rotores em liga de alumínio-silício • Intermediária interna em termoplástico de engenharia (1/3cv a 1cv - monofásica) e em ferro fundido (1½cv a 3cv monofásicos e EP-0; 3/4cv a 3cv trifásicos) • Protetor térmico contra sobrecarga até 1cv (monofásicos)

Capacitores permanentes até 1cv • Grau de proteção: IP 21 • Isolamento: Classe "B" e "F" (EP-0) • Selo mecânico: Ø 5/8"

Ejetores em corpo de alumínio-silício, componentes internos e ralo em termoplástico de engenharia - Guia de válvula em aço inox

Opcional: Ponta do eixo em aço inox para todas as potências

EP-0 Ejetor n° 0

EP 2-1 / EP-3-1 Ejetor n° 1

EP 1-0 / EP-2-0 Ejetor n° 0

PK: Pressão de descarga para vazão indicada

PF: Submergência mínima indicada

Vazão baseada ao nível do mar com submergência apropriada do ejetor

ásico 220V	° %		9. E				0	6 6							Prof	undid	ade at	té o ní	vel din	âmico	– Me	tros								na
or or	Trifásico 220V/380V	Pot. (cv)	Diâmetro rotor (mm)	Ejetor	Sucção	Pressão	Elevação	Diâmetro mínimo do poço	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50	РК	mínima
Moi 127	Tr 220	(,	rotc		Š	P	Ë	mír									\	/azão	(m³/h)										PF
EP-0		1/2**	110		1"	3/4"	3/4"		0,82	0,80	0,79	0,77	0,76	0,74	0,72	0,66	0,58	0,49	0,42	0,36	0,30	0,25							12	17
		1/3	112,0								0,89	0,75	0,60	0,49	0,39	0,32													11	14
		1/2	120,0									0,96	0,89	0,78	0,68	0,58	0,50	0,42	0,35	0,28									12	17
		3/4	125,0	N.0*								0,96	0,91	0,86	0,79	0,69	0,59	0,50	0,42	0,35	0,27								16	17
EP 1-0 M		1	133,0	N.U*								0,97	0,92	0,88	0,82	0,73	0,64	0,55	0,48	0,41	0,36	0,31	0,22						19	17
	EP 1-0 T	1½**	143,0									0,90	0,86	0,85	0,83	0,82	0,79	0,75	0,70	0,64	0,59	0,53	0,48	0,42	0,35	0,28			25	17
		2**	153,0									0,88	0,86	0,84	0,81	0,79	0,76	0,74	0,72	0,69	0,66	0,62	0,59	0,55	0,48	0,42	0,37		30	17
		3	162,0		11/4"	1"	3/4"	3"				0,90	0,87	0,86	0,85	0,83	0,80	0,77	0,73	0,71	0,70	0,69	0,66	0,63	0,60	0,52	0,48	0,35	35	17
		1/3	112,0		1/4	1	3/4				1,45	1,19	0,98	0,80	0,60	0,41	0,23												13	14
		1/2	120,0									1,60	1,32	1,12	0,92	0,72	0,55	0,36											13	17
		3/4	125,0									1,65	1,47	1,24	1,05	0,88	0,71	0,53	0,34										15	17
EP 2-0 M		1	133,0	N.2-0*								1,70	1,59	1,43	1,27	1,11	0,92	0,71	0,49	0,32									18	17
	EP 2-0 T	1½**	143,0									1,73	1,70	1,62	1,52	1,38	1,22	1,05	0,91	0,78	0,65	0,51	0,36						24	17
		2**	153,0									1,73	1,70	1,67	1,60	1,44	1,32	1,20	1,10	0,96	0,84	0,72	0,60	0,48	0,34				29	17
		3	162									1,76	1,75	1,72	1,70	1,60	1,45	1,33	1,23	1,16	1,03	0,92	0,70	0,56	0,92	0,46	0,35	0,24	34	17

^{*} Os modelos que utilizam os ejetores modelos Nº 0 e Nº 2-0, deverão sofrer reduções nos seus bocais de 1%" para 1" e de 1" para 3/4", possibilitando a montagem dos tubos que serão conectados ao ejetor.

^{**} Monofásicos - Tensão Bivolt: 127/220V

			و د (د				0	0유					Profu	undida	de até (nível (dinâmi	co – M	etros						е
Monofásico 127 ou 220V	Trifásico 220V/380V	Pot. (cv)	Diâmetro rotor (mm)	Ejetor	Sucção	Pressão	Elevação	Diâmetro mínimo do poço	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	PK	mínima
			<u> </u>		0,	<u> </u>		ğ Ö							Vaz	ão (m³	/h)								꿉
		1/3	112,0						1,85	1,53	1,18	0,87	0,61	0,30										10	17
		1/2	120,0							1,90	1,81	1,59	1,28	1,01	0,75	0,40								11	21
		3/4	125,0								1,83	1,68	1,47	1,43	0,87	0,61	0,27							14	24
EP 2-1 M		1	133,0	N.1							1,86	1,80	1,57	1,30	1,10	0,68	0,45							17	27
	EP 2-1 T	1½**	143,0								1,86	1,83	1,80	1,76	1,67	1,48	1,23	1,01	0,76	0,50	0,32			24	34
		2**	153,0								1,83	1,80	1,77	1,73	1,64	1,45	1,22	1,02	0,85	0,68	0,50	0,36		29	39
		3	162,0		11/4"	1"	3/4"	4"			1,89	1,86	1,83	1,77	1,70	1,55	1,40	1,21	1,03	0,97	0,81	0,65	0,33	34	44
		1/3	112,0		1/4	1	3/4	4		1,92	1,37	0,73												09	16
		1/2	120,0								2,48	1,91	1,39	0,75										10	20
		3/4	125,0								2,76	2,30	1,77	1,22	0,45									12	22
EP 3-1 M		1	133,0	N.3-1							2,90	2,48	2,00	1,50	0,83									15	25
	EP 3-1 T	1½**	143,0								3,27	2,81	2,36	1,92	1,47	1,00								21	31
		2**	153,0								3,61	3,25	3,04	2,32	1,89	1,42	0,96	0,48						26	36
		3	162,0								3,95	3,66	3,34	2,72	2,31	1,80	1,40	1,02	0,80	0,46				31	41

Obs: Os ejetores modelos Nº. 0 e Nº. 1, são idênticos aos modelos anteriores.

- Compacta
- Baixo nível de ruído
- Portetor térmico de sobrecarga evita a queima do motor
- Rotor em bronze maior resistência contra corrosão
- Grau de proteção IP44 melhor proteção para o equipamento e o usuário

Modelo			AMT		Al	tura Man	ométrica	Total em	metros o	de Coluna	de Água	(mca) - N	lão estão	incluidas	as perda	s por atri	to	
Monofásico	Pot. (cv)	Sucção/Elevação (bsp)	máx.	0	4	8	12	16	20	24	28	32	36	40	44	48	52	56
110V/ 220V		(**)	(mca)	Vazão (m³/h)														
DP-60	1/2	1"	44	2,3	1,9	1,6	1,4	1,2	1,0	0,8	0,6	0,5	0,3	0,1				
DP-80	1	1	60	2,9	2,6	2,4	2,1	1,9	1,6	1,4	1,2	1,0	0,8	0,7	0,5	0,4	0,2	0,1

Bomba Autoaspirante Inox

Aplicações: Residencial | Predial | Agrícola

- Carcaça em inox
- Rotor em latão
- Compacta
- Não possui válvula de retenção interna
- Protetor térmico de sobrecarga evita a queima do motor
- Grau de proteção IP44 melhor proteção para o equipamento e o usuário

Modelo			AMT	Altura I	Manométrica T	otal em metros	de Coluna de A	Água (mca) - Nâ	ão estão incluid	as as perdas po	or atrito
Monofásico	Pot. (cv)	Sucção/Elevação (bsp)	máx.	10	13	16	19	22	25	28	31
127V/ 220V			(mca)				Vazão	(m³/h)			
AI-2	0,5	1"	34	2,3	1,8	1,3	0,9	0,7	0,5	0,3	0,2

Bombas Submersas para Poços Profundos

Aplicações: Residencial | Predial | Industrial | Agrícola

Série SPP

- SSR: Aço inox e rosca rolada
- TSR: Termoplástico e rosca rolada
- S: Aço inox e rosca fina
- Indicados para poços tubulares com diâmetro mínimo de 4" (101.6mm)

Leitura dos códigos para todos os modelos (séries)

Ex: 2.1 SSR/TSR 19 - N° de estágios

Submersa (bocal e intermediária em inox)

Série / Vazão média em m³/h

- Bocal, carcaça, intermediária, eixo, corpos de difusores em aço inox
- Impulsores e difusores em termolástico de engenharia
- Motores Dancor Submersos (MDS): em aço inox com flange em ferro fundido
- Refrigerado a óleo (atóxico)
- Rebobinável
- Grau de proteção IP 68
- Isolamento classe "F"
- Resistente à abrasivos max 50g/m³
- * TSR Submersa (Bocal 1¼" BSP) e intermediária em termoplástico, opção até 2 Hp (nas séries 1.1, 2.1, 3.2, 5.4 e 8.3)

		_				,																							_
		Dot	ios	S	de *(Diâmetro rotor (mm)	AMT			Altur	a Mar	nomét	rica To	tal en	metr	os de	Colur	na de A	Água (mca)	- Não	estão	incluic	das as	perda	s por	atrito		
Mod	delo	Pot. (cv)	Estágios	Fases	Bocal de descarga (bsp)*	âme or (r	máx.	18	24	30	36	42	51	67	79	85	103	115	121	134	140	158	164	176	182	201	225	250	292
		()	ŭ		g & _	ig g	(mca)										,	Vazão	(m³/h)									
1.1-SSR-13	1.1-TSR-13	1/2	13				103	1,90	1,80	1,70	1,60	1,40	1,30	1,00	0,80	0,60													
1.1-SSR-19	1.1-TSR-19	3/4	19				151	2,10	2,00	1,90	1,80	1,70	1,60	1,40	1,30	1,20	1,00	0,80	0,70	0,50	0,30								
1.1-SSR-23	1.1-TSR-23	1	23				185	2,20	2,10	2,00	1,90	1,80	1,70	1,60	1,50	1,40	1,30	1,20	1,10	1,00	0,90	0,60	0,50	0,30					
1.1-SSR-29	1.1-TSR-29	1 ½	29				195	2,20	2,10	2,00	1,98	1,90	1,80	1,70	1,60	1,50	1,30	1,20	1,10	1,00	0,90	0,80	0,70	0,60	0,50				
2.1-SSR-08	2.1-TSR-08	1/2	8				75, 5	3,30	2,80	2,60	2,40	1,90	0,90																
2.1-SSR-11	2.1-TSR-11	3/4	11				106	3,40	2,90	2,80	2,60	2,30	1,90	1,50	1,30	0,30													
2.1-SSR-14	2.1-TSR-14	1	14				127	3,50	3,20	3,10	3,00	2,80	2,40	2,10	1,90	1,30	0,80	0,60											
2.1-SSR-19	2.1-TSR-19	1 ½	19			75,4	170	3,50	3,30	3,20	3,10	3,00	2,70	2,50	2,40	2,10	1,90	1,80	1,50	1,30	0,70	0,50							
2.1-SSR-21	2.1-TSR-21	2	21				200	3,90	3,80	3,60	3,50	3,40	3,10	2,90	2,80	2,50	2,30	2,20	1,90	1,85	1,50	1,30	1,00	0,70					
2.1-SSR-28		3	28				260	4,00	3,80	3,70	3,60	3,50	3,30	3,20	3,10	2,80	2,60	2,50	2,40	2,30	2,10	2,00	1,80	1,70	1,40	1,10			
3.2-SSR-07	3.2-TSR-07	1/2	7				63	4,50	4,20	3,80	3,40	3,00	2,20																
3.2-SSR-09	3.2-TSR-09	3/4	9		1½"		82	4,80	4,50	4,20	4,00	3,80	3,30	2,20	0,80														
3.2-SSR-11	3.2-TSR-11	1	11				103	5,00	4,80	4,60	4,40	4,20	3,80	3,10	2,60	2,20													
3.2-SSR-15	3.2-TSR-15	1 ½	15				127	5,10	4,90	4,70	4,50	4,30	4,00	3,50	3,10	2,90	2,00	1,10	0,70										
3.2-SSR-20	3.2-TSR-20	2	20				173	5,30	5,20	5,10	5,00	4,90	4,70	4,40	4,00	3,90	3,40	3,00	2,70	2,30	2,20	1,30	0,80						
5.4-SSR-07	5.4-TSR-07	3/4	7				54	7,30	6,50	5,40	4,20	3,00	2,20																
5.4-SSR-09	5.4-TSR-09	1	9				74	8,10	7,50	6,90	6,40	5,30	3,80	1,50															
5.4-SSR-12	5.4-TSR-12	1 ½	12				92	8,50	8,10	7,60	7,20	6,70	5,80	3,90	2,30	1,50													
5.4-SSR-16	5.4-TSR-16	2	16			72,0	123	8,70	8,50	8,20	7,90	7,50	7,00	5,80	4,60	4,10	2,40	1,30											
8.3-SSR-07	8.3-TSR-07	1	7	Mono/		/,	58		8,60	7,60		4,80																	
8.3-SSR-09	8.3-TSR-09	1 ½	9	Tri			73	9,90	9,20	8,60		6,90		2,20															
8.3-SSR-12	8.3-TSR-12	2	12				97	10,40	9,90	9,50	9,00	8,50	7,60	5,40	3,50	2,40													
8.3-SSR-16		3	16				131					9,50		7,80	6,80	6,20	4,10	2,60											
11.2-SSR-06		1½	6				53				,	5,60																	
11.2-SSR-08		2	8				68					9,00																	
11.2-SSR-11		3	11		2"	79,2	93						10,90	7,30	4,40	3,10													
15.6-SSR-06		2	6			,	50				8,70																		
15.6-SSR-08		3	8				66					10,70																	
15.6-SSR-10		4	10				78					12,68		4,72															
1.1-S-34		2	34				230		2,15			2,00						1,30				0,90	0,80						
2.1-S-34	-	4	34				300		3,98			3,79		3,52				3,09			2,86		2,53			2,09			
2.1-S-42		5 ½	42			75,4	360		3,98				3,75					3,13		2,93			2,64			2,20		1,89	1,59
3.2-S-29		3	29				260	5,40	5,30	5,20	5,10			4,60		4,30		3,80			3,40	3,00	2,90			2,10			
3.2-S-35		4	35				300				5,60	5,52	5,38	5,20	4,95														
3.2-S-40		5 ½	40		1½"		330	0.00	0.00		0.45	- 05				5,00		4,60			4,30	4,10	4,00	3,80	3,70	3,40	3,00	2,50	2,00
5.4-S-23		3	23				182						7,50							3,30		2.05	2.65	4.55	4.55				
5.4-S-29		4	29				200	9,11		8,60		8,25		7,37		6,67		5,35	5,07	4,39	4,06	3,08	2,96			4.00	2.50	2.00	
5.4-S-37		5 ½	37			72,0	280		9,80	,	,	9,30		8,60					7,20	6,80		6,00	5,80			4,30	3,50	2,60	
8.3-S-23		4	23				185						9,71								4,54	3,18	2,52	-		2.55			
8.3-S-29		5 ½		·									10,10														c 20	F 40	
8.3-S-40		7,5	40	Tri									12,00 13,19						10,40	9,90	9,80	9,10	8,80	8,40	8,20	7,30	6,20	5,10	
11.2-S-13		4	13	Mono/Tri															2.00										
11.2-S-15		5 ½	15			70.2							13,40							11 20	10.00	0.00	0.20	C 00	4.66				
11.2-S-22		7,5	22	Tri	2"	79,2	195											12,90	12,40	11,20	10,80	9,00	8,20	6,00	4,60				
15.6-S-12		5 ½	12	Mono/Tri									14,20 16,70					7.00	E 00	2 50									
15.6-S-17		7,5	17	Tri			145	20,60	19,90	19,20	18,50	17,80	10,70	14,70	13,10	12,20	9,20	7,00	3,90	3,50									

MDS - Motor Dancor Submerso

- Motor até 3,0cv flange em ferro fundido, de 4,0 a 7,5cv flange em aço inox.
- Lubrificação: Fluido refrigerante atóxico (óleo medicinal)
 - Aprovado pela FDA (Food and Drug Administration)
 - Aprovado pela ANVISA (Agência Nacional de Vigilância Sanitária)
 - Excelente lubrificação
 - Excelente dissipação de calor
- Carga axial: 150kg (1500N), 250kg (2500N) e 440kg (4400N)
- Classe isolamento: F
- Grau de proteção: IP 68
- Queda de tensão admissível: ± 10%
- Profundidade máxima de submersão: 360m
- Temperatura da água: 35°C
- pH da água: 6 a 9
- Velocidade mínima de fluxo de arrefecimento ao longo dos motores: 8,0cm/s
- Número máximo de partidas por hora: 30 / Trifásico e 12 / Monofásico
- Proteção dos motores monofásicos: Caixa de Controle e Quadro de Comando Dancor
- Proteção dos motores trifásicos: Quadro de Comando Dancor
- Frequência: 60 Hz
- Trabalha também na horizontal
- Motores rebobináveis

					BITOLA	O CABO I	EM mm			
Tensão	cv	1,5	2,5	4	6	10	16	25	35	50
				Distância do	Motor ao Qu	iadro Geral d	le Distribuiçã	io em Metro	S	
	1/2	80	130	210	320	540	830	1250	1700	2350
	3/4	60	100	160	240	400	620	930	1260	1750
Monofásico	1	50	80	130	190	330	510	770	1040	1440
	2	30	50	80	120	210	320	490	680	960
220V/60 Hz	3	20	40	60	90	160	250	380	530	760
	4	-	30	50	75	130	200	305	425	610
	5½	-	20	40	60	100	150	230	320	460
	0,5	180	300	490	730	1230	1910	2880	3910	5390
	0,75	130	220	350	539	900	1390	2100	2850	3950
	1,0	110	180	300	440	750	1170	1760	2400	3320
Trifásico	2,0	60	100	170	250	430	670	1010	1380	1920
220V/60 Hz	3,0	50	80	130	190	330	510	780	1060	1470
2201/00112	4,0	40	70	100	150	265	405	620	845	1175
	5,5	30	50	80	110	200	300	460	630	880
	7,5	-	30	50	80	140	220	330	450	630
	0,5	470	780	1250	1870	3160	4890	7360	9980	13770
	0,75	360	600	970	1450	2450	3800	5730	7800	10790
	1,0	300	510	810	1220	2070	3200	4830	6560	9070
Trifásico	2,0	170	280	450	680	1160	1800	2730	3730	5180
380V/60 Hz	3,0	130	210	340	520	880	1360	2060	2810	3900
300 4, 30 112	4,0	105	175	280	425	725	1120	1700	2320	3220
	5,5	80	140	220	330	570	880	1340	1830	2540
	7,5	50	80	130	190	320	500	760	1040	1450

Quadro de Comando

A linha de bombas submersas SPP Dancor é formada por um conjunto hidráulico acoplado a um motor submerso da série MDS. Esses motores possuem um elevado grau de tecnologia, desenvolvimento e sofisticação, por isso são necessários cuidados especiais e atenção na hora de sua instalação.

Funções Básicas: Proteção contra curto-circuito; Proteção contra falta de fase e sobrecargas (por subtensão e sobretensão); Proteção contra surtos de tensão; Controle do nível da água do poço.

» Tensões:

- Monofásicos: 220V
- Trifásicos 220V ou 380V
- Outras tensões sob consulta

Caixa de Controle MDS

As caixas de controle MDS foram desenvolvidas exclusivamente para acionar a partida dos motores MDS monofásicos.

Proporcionam a perfeita comutação entre o capacitor de partida e o capacitor permanente, promovendo também a proteção contra surtos de tensão e sobrecargas.

FUNÇÕES:

- » Proteção contra surto de tensão
- » Sobrecarga
- » Aterramento

Quadro de Comando MDS

O Quadro de Comando MDS é um dispositivo projetado para realizar o controle, acionamento e proteção dos motores elétricos submersos, tanto monofásicos quanto trifásicos. O quadro de comando é montado em caixa termoplástica de engenharia.

O quadro de comando atua nas seguintes situações:

- » Sobrecarga
- » Falta de fase
- » Queda de fase
- » Curto circuito
- » Controle do nível de água
- » Proteção contra raios, surtos de tensão e manobras da rede elétrica
- » Aterramento de todo o sistema

Gerenciador Smart QC

O gerenciador Smart QC com amperímetro, voltímetro e horímetro digitais com display LCD foi desenvolvido para fornecer ao usuário o máximo de informações, visando o controle operacional da bomba. Nas versões monofásica e trifásica, o gerenciador é empregado no acionamento, proteção, controle e monitoramento do tempo de funcionamento de bombas submersas.

De fácil operação, o Smart QC possui botoeira liga/desliga, e horímetro usado para a totalização do tempo de funcionamento da bomba, auxiliando na tarefa de manutenção programada. Possui seletor automático e manual, permitindo gerenciar o acionamento e a parada da bomba através do automático de nível superior ou manualmente. Além disso, resguarda os motores contra falta de fase, sobrecarga (por subtensão e sobretensão). Protege a bomba no trabalho a seco, através da função de controle nível eletrônico e eletrodos de nível (superior e inferior).

O equipamento fica também protegido contra surto de tensão, evitando que um aumento súbito de tensão causado na rede elétrica, pico de tensão ou raios danifiquem a bomba. São montados em caixas fabricadas em termoplástico de engenharia. Para maior facilidade de inspeção, controle e instalação, as caixas são dotadas de dobradiças e dispositivos de fechamento.

Bombas Submersas para Poços Profundos 3"

Aplicações: Residencial | Predial | Industrial | Agrícola

Série 2-SL-08 Série 2-SL-11

Bombeiam água limpa, livre de sólidos em suspensão e substâncias não compatíveis com a bomba e seus componentes, com concentração de abrasivos abaixo de 50g/m³.

Caracterísitcas da Bomba

- Bocal da carcaça em latão
- Carcaça e eixo em aço inox
- Impulsdores e difusores em termoplástico de engenharia

Caracterísitcas do Motor

- Em aço inox
- Refrigerado a óleo atóxico
- Tensão única: Monofásico 110V ou 220V
- IP 68

Caixa de Controle

- Responsável pela partida dos motores
- Em termoplástico
- IP44
- Capacitor permanente
- Relé de sobrecarga e interruptor

Modelo	S		Roc	al de			A	ltura	Mano	métric	a Tota	l em n	netros	de Co	oluna d	de Águ	ıa (mc	a) - Nâ	io estâ	ío incl	uidas a	as per	das po	r atrit	0	
Monofásico	tágic	Pot. (cv)	Des	carga	AMT	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50	52	54	56	58
110V ou 220V	Si Si	(01)	(b	sp)											Vaz	ão (m	³/h)									
2-SL-08	8	1/3	4"	4"	42	3,0	2,9	2,8	2,7	2,5	2,4	2,2	2,1	1,9	1,7	1,4	1,1									
2-SL-11	11	1/2	1	1	60				3,1	3,0	2,9	2,8	2,7	2,6	2,5	2,3	2,2	2,1	2,0	1,8	1,7	1,5	1,3	1,1	0,8	0,5

Bombas Submersíveis para Drenagem e Esgotamento

Aplicações: Residencial | Predial | Industrial | Agrícola

DS-4

- Leve e compacta
- Baixo nível de ruido
- Baixo consumo de energia
- Produzida em termoplástico de alta resistência
- Sensor de nível automático integrado, assume automaticamente o liga/desliga da bomba (somente em modelos com bóia)
- Motor elétrico monofásico monotensão de 1/12cv disponível em 127 ou 220V
- Classe de isolamento do motor: F
- Grau de proteção do motor: IP 68
- Motor refrigerado por óleo medicinal atóxico
- Cabo elétrico com 3 metros e tomada com pino terra, conforme norma da ABNT 14136:2002

Modelo			AMT			Altura		trica Total estão incl				(mca)		
Monofásico	Pot. (cv)	Elevação Ø	máx. MCA	0,5	1,0	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,5	5,5
127V ou 220V			IVICA					٧	azão (m³/l	1)				
DS-4	1/12	1"	6,0	4,8	4,6	4,4	4,1	3,9	3,6	3,2	2,7	2,2	1,5	0,8

DS-9

- Rotor semiaberto em Noryl®
- Motor refrigerado a óleo atóxico
- Profundidade de imersão: 5m
- Cabo elétrico de 5m
- Isolamento classe F
- Grau de proteção IP 68
- Versão Monofásica 127V ou 220V, 60 Hz, 2 pólos (3.500 rpm); Capacitor integrado; Protetor térmico para desligar a bomba em caso de sobrecarga; Tomada 3 pinos.
- Versão Trifásica 220V ou 380V, 60 Hz, 2 pólos (3.500 rpm)
- Passagem de sólidos de 10mm

Opcionais: Dispositivo para aspiração rebaixada (este componente permite efetuar sucção até a remoção completa da água até 3mm de água residual).

Mod	delo	Potência		Diâmetro	ATM			em Coluna de Água as perdas por atrito	
Monofásico	Trifásico	em cv	Elevação	rotor (mm)	máxima (m)	2	4	6	8
127V ou 220V	220V ou 380V				, ,		VAZÃ	O m³∕h	
DS-9 M	DS-9 T	1/2	1¼"	91,0	10	9,4	7,4	4,7	1,4

Bombas Submersíveis para Drenagem e Esgotamento

Aplicações: Residencial | Predial | Industrial | Agrícola

SDE / SDE Óleo

- Monobloco Vertical
- Carcaça (com ralo de aspiração incorporado) em liga de alumínio-silício em ferro fundido (passagem de sólidos até 15mm de diâmetro), bocal de descarga de 2"
- Rotor semiaberto em ferro fundido
- Vedação do eixo por selo mecânico Ø 5/8" tipo 16
- Motores elétricos em 2 polos (3.500 rpm) e 4 polos (1.750 rpm nos modelos 2060 SDE e 2063 SDE), 60 Hz
- Grau de Proteção: IP 68
- Isolamento: classe "B"
- Todos os modelos equipados com 5m de cabo (Monofásicos: 3x2,5mm² Trifásicos: 4x1,5mm²)

Mod	delo		netro (mm)		Altura	Manom	étrica T	otal em	metros	de Coli	ına de <i>l</i>	Água (m	ıca) - Nâ	io estão	incluid	as as pe	rdas po	r atrito
Monofásico	Trifásico	Pot. (cv)	imet or (m	rpm	2	4	6	8	10	12	14	16	18	20	22	24	26	28
127V ou 220V	220V ou 380V	(00)	Diâm rotor								Vazão	(m³/h)						
2050 SDE / 2050 SDE-ÓLEO	2053 SDE / 2053 SDE-ÓLEO	1/2	95,0	3.500	22,2	17,3	13,0	8,2	4,8									
2060 SDE / 2060 SDE-ÓLEO	2063 SDE / 2063 SDE-ÓLEO	4	142,0	1.750	32,0	27,0	22,0	16,0										
2101 SDE / 2101 SDE-ÓLEO	2103 SDE / 2103 SDE-ÓLEO	1	104,0		26,0	24,8	21,0	18,0	15,0	13,0	8,0	4,0	1,0					
2201 SDE / 2201 SDE-ÓLEO	2203 SDE / 2203 SDE-ÓLEO		125,0	3.500	33,0	32,0	29,2	27,8	25,0	22,4	19,6	16,4	13,0	8,6	3,6			
2211 SDE / 2211 SDE-ÓLEO	2213 SDE / 2213 SDE-ÓLEO	2	144,0	3.500	26,8	26,4	26,0	25,0	24,0	22,4	20,6	19,0	16,8	14,8	12,4	10,0	7,2	4,6
2301 SDE / 2301 SDE-ÓLEO	2303 SDE / 2303 SDE-ÓLEO	3	139,0		38,8	38,0	36,8	35,4	33,6	31,4	29,6	26,4	23,4	20,2	16,8	13,2	9,4	5,0

DS 56-40

- Carcaça, intermediária e placa de desgaste em ferro fundido
- Rotor semiaberto em ferro fundido
- Vedação do eixo por selo mecânico Ø 5/8" tipo 06 (vide opcionais), construído com borracha nitrílica, mola de aço inox e faces de vedação em carbeto de silício.
- Motores elétricos em 2 polos (3.500 rpm), 60 Hz, refrigerado com óleo dielétrico.
- Grau de Proteção: IP 68 Isolamento: classe "B"
- Passagem de sólidos de 40mm, bocais com rosca de 3"BSP, comprimento do cabo de ligação: 3,5m

Me	odelo	Pot.	Elevação	AMT	letro (mm)						Alt	ura M		trica T estão					,	gua (m	ica)					
Monofásico	Trifásico	(cv)	ø	máx. MCA	Diâm otor (2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
127 ou 220V	220V ou 380V			IVICA	0 5										Vaz	ão (m	³/h)									
	FC 40	2		15	103,0	57,0	54,7	52,3	49,8	46,9	43,8	40,4	36,6	32,3	27,1	22,4	16,8	11,5								
DS	56-40	3	3″	19	116,0	58,0	56,2	54,8	53,3	51,7	50,0	48,1	46,1	43,8	41,3	38,4	35,1	31,3	26,7	21,6	16,3	11,5				
	DS 56-40	4		23	123,0	59,0	57,5	56,5	55,8	55,0	54,2	53,5	52,4	51,3	50,2	48,1	46,7	45,1	43,3	41,5	39,5	36,3	31,1	23,1	15,4	10,2

DS 76-50

- Carcaça, intermediária e placa de desgaste em ferro fundido
- Rotor semiaberto em ferro fundido
- Vedação do eixo por selo mecânico Ø 5/8" tipo 06 (vide opcionais), construído com borracha nitrílica, mola de aço inox e faces de vedação em carbeto de silício.
- Motores elétricos em 4 polos (1.750 rpm), 60 Hz, refrigerado com óleo dielétrico.
- Grau de Proteção: IP 68 Isolamento: classe "B"
- Passagem de sólidos de 50mm, bocais com rosca de 3" BSP, comprimento do cabo de ligação: 3,5m

Mod	delo	Pot.	Elevação	AMT	etro mm)			Altura M			netros de Co as perdas p	_	gua (mca)		
Monofásico	Trifásico	(cv)	ø	máx. MCA	Diâm otor (2	3	4	5	6	7	8	9	10	11
127 ou 220V	220V ou 380V			IVICA	Δ Θ					Vazão	(m³/h)				
		1/2		5,9	126,0	39,26	28,71	18,42	7,34						
DC 7	DC 76 F0		2"	9,6	158,0	60,54	55,56	48,71	41,10	35,66	27,49	16,77			
DS-76-50		2	3	10,8	162,0	70,51	65,92	60,73	54,34	46,26	39,62	30,86	20,34	6,87	
		3		11,8	169,0	81,55	76,48	69,77	62,35	55,40	49,00	40,43	30,57	20,34	9,13

Bombas para Drenagem e Esgotamento

Aplicações: Residencial | Predial | Industrial | Agrícola

Autoescorvante AAE

- Monobloco
- Rotor semiaberto
- Motor elétrico 2 polos, 3.500 rpm, 60 Hz
- Grau de proteção até 2cv IP 21; 4,0 a 7,5cv IP 55 (TFVE)
- Isolamento: Classe "B" e "F" (motores com IP55)
- Selo mecânico: até 2cv Ø 5/8" tipo "16"; 4,0 a 7,5cv Ø 1¼" Tipo "21
- Rotor semiaberto: Mods-706/709/711/715 em liga de alumínio-silício, demais modelos em ferro fundido

Mo	delo		Tubu	•	0 E	máx. sa)			Α	ltura	Manc	mét	rica T	otal e	m m	etros	de C	oluna	a de A	Água	(mca) - Nâ	o est	ão in	cluid	as as	perd	as po	r atri	to		
Monofásico	Trifásico	Pot. (cv)	ñão p)	ıção p)	Diâmetro rotor (mm)	MT má (mca)	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
127V/220V	220V/380V	(64)	Sucção (bsp)	Elevação (bsp)	Diá	AMT (m)												V	azão	(m³/l	h)											
706 S	711 S	1/2	1½"	1½"	96,0	13	12,8	12,0	10,8	9,7	8,5	7,2	5,8	4,5	3,0	1,5																
709 S	715 S	1	1/2	1/2	114,0	21				17,2	16,5	15,6	14,7	13,6	12,5	11,2	9,8	8,2	6,7	5,2	3,8	2,5	1,4									
712 S	717 S	2	2"	2"	119,0	21						24,7	23,3	21,9	20,4	18,6	16,7	14,6	12,4	10,0	7,7	5,4	3,3	1,4								
Mo	delo		0	ý	netro (mm)	áx.			Α	ltura	Manc	mét	rica T	otal e	m m	etros	de C	oluna	a de A	Água	(mca) - Nâ	o est	ão in	cluid	as as	perd	as po	r atri	to		
Monofásico	Trifásico	Pot. (cv)	Sucção (bsp)	Elevação (bsp)	Diâmetro otor (mm)	E B	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
220V/440V	220V/380V	(cv)	S _L	Ele (Diân rotor	AMT (m)												V	azão	(m³/l	h)											
720 MJM	720 TJM	4			141,0	22			47,7	45,9	43,9	41,8	39,5	37,1	34,5	31,7	28,6	25,3	21,8	18,2	14,4	10,7	7,1	3,7								
722 MJM	722 TJM	5	3"	3"	146,0	25			57,9	56,2	54,3	52,4	50,3	48,1	45,8	43,3	40,7	37,8	34,7	31,4	28,0	24,3	20,6	16,9	13,2	9,7	6,4	3,3				
725 MJM	725 TJM	7½			148,0	30								73,5	71,2	68,8	66,3	63,7	60,9	58,0	54,9	51,6	48,1	44,5	40,8	36,9	32,8	28,5	23,8	18,9	13,7	8,2

Vertical VAS

- Aplicações: Águas subterrâneas, esgotos sanitários, etc.
- Monobloco
- Vortical
- Carcaça (com ralo de aspiração incorporado) em liga de alumínio-silício, rotor semiaberto em ferro fundido (passagem de sólidos até 15mm de diâmetro), bocal de descarga de 2"
- Motor elétrico 4 polos, 1.750 rpm, 60Hz Tensões: Monofásico 127/220V; Trifásico 220/380V
- Grau de proteção: IP 21
- Isolamento: Classe "B"

Mod	delo	Pot.	etro (mm)	Sucção/Elevação		Altu			em metros uidas as pe		٠,	nca)	
Monofásico	Trifásico	(cv)	Diâme otor ((bsp)	1	2	3	4	5	6	7	8	9
127V / 220V	220V / 380V							\	/azão (m³/h)			
1050 VAS	1053 VAS	1/2			19,0	17,5	15,2	12,4	10,5	7,4	4,5		
1060 VAS	1063 VAS	_	142,0	2"	33,0	32,0	30,0	27,0	26,0	22,0	21,0	16,0	13,5
1101 VAS*	1103 VAS*				33,0	32,0	30,0	27,0	26,0	22,0	21,0	16,0	13,5

^{*} Com haste

Bombas Centrífugas de Aplicações Múltiplas

Aplicações: Residencial | Predial | Industrial | Agrícola

CAM 4 Polos

- » Carcaça, intermediária e rotor em ferro fundido.
- » Vedação do eixo por selo mecânico, construído com borracha nitrílica, mola de aço inox e faces de vedação em grafite e cerâmica.
- » Classe de isolamento: "F".
- » Grau de proteção: IP55 (TFVE).

Modelo	Pot.	Tubu	lação	netro (mm)	AMT	Α			l em metros luidas as pei		٠,	a)
Trifásio	(cv)	Sucção	Elevação	Diâmetro rotor (mm	máx. (mca)	6	8	10	12	14	16	18
220V / 380V		(bsp)	(bsp)		(33,			,	Vazão (m³/h)		
	2,0			153,0	9	54,6	38,7					
	3,0			167,0	12	68,9	57,9	42,2				
15-70 (FLG)	4,0	4"	3"	182,0	15	92,7	83,4	72,2	57,5	31,0		
(120)	5,0			194,0	17		101,6	91,8	79,9	63,8	34,6	
	6,0			203,0	19		103,1	95,7	86,8	75,3	57,9	14,4
	5,0			180,0	10	111,3	87,6					
17-120	6,0	6"	4"	184,0	11	126,6	98,9	57,3				
(FLG)	7,5	0	4	194,0	14	147,7	134,3	115,9	80,4			
	10,0 *			215,0	19				167,9	145,1	114,7	60,5

^{*} TENSÕES: Trifásicos a partir de 10cv - 220/380/440/760

Modelo	Pot.	Tubu	ılação	etro (mm)	AMT				Altu			otal em n incluidas			٠,	mca)			
Trifásio 220V / 380V	(cv)	Sucção (bsp)	Elevação (bsp)	Diâme rotor (máx. (mca)	4	5	6	7	8	9	10 Vazão	11 (m³/h)	12	13	14	15	16	17
10-130 (FLG)	5,0 7,5	6"	4"	200 218	12,5 19	134,9 170,0	126,7 164,5	118,2 158,7	109,4 152,6	100,1 146,1	90,1 139,2	79,0 131,8	66,3 123,8	49,8 115,1	105,5	94,7	82,4	68,1	51,0

CAM 2

- » Carcaça em liga de alumínio-silício, alta resistência à pressão e oxidação, com bocal de recalque na linha centro/vertical, para um perfeito escorvamento.
- » Grau de Proteção: IP 44
- » Isolamento: Classe "F"
- » Vedação do eixo por selo mecânico Ø 12,00mm, tipo "04", conjunto de precisão, construído com borracha nitrílica, mola de aço inox e faces de vedação em grafite e cerâmica.
- » Temperatura de trabalho do líquido até 80°C.

Modelo	Pot.	Sucção	Elevação	etro (mm)	AMT		Α			Total em n incluidas				a)	
Monofásico	(cv)	(bsp)	(bsp)	iâm tor (máx. (mca)	2,9	3,9	4,9	5,9	6,9	7,8	8,8	9,8	10,7	11,6
127V ou 220V				مَ وَ	(IIICa)					Vazão	(m³/h)				
CAM-2	1/10	3/4"	3/4"	89,0	11,8	3,06	2,86	2,6	2,34	2,04	1,78	1,46	1,13	0,81	0,40

Bombas Centrífugas de Aplicações Múltiplas

Aplicações: Residencial | Predial | Industrial | Agrícola

Série CAM

- Monobloco
- Carcaça em liga de alumínio-silício; Em ferro fundido nos modelos 27-50, 63-90, 89-62, 105-50, 109-40, 41-150 e 91-100
- Rotores em termoplástico de engenharia nos modelos CAM-W4C,

CAM-W6C (3/4 e 1cv monofásicos); Ferro fundido nos modelos 27-50, 63-90, 89-62, 105-50, 109-40, 41-150 e 91-100 . Outros modelos em liga de alumínio-silício.

- Selos mecânicos: Ø 1/2" tipo 16 no modelo CAM-W4C; Ø 5/8" tipo 16 nos modelos com motores de 3/4cv a 3cv; Ø 1½" tipo 21 nos modelos com motores de 4cv a 15cv; Ø1¾" tipo 21 nos modelos de 20cv a 50cv.
- Classe de isolamento: 'B" e "F" (motores com IP55).
- Grau de proteção IP21 de 1/4 a 3cv e IP55 de 4 a 75cv.
- Motores monofásicos com protetor térmico de 1/4 até 1 cv.

Mo	odelo		Tubi	ulação	0 E	AMT		А	ltura I	Mano	métri	ca Tot	al em	metr	os de	Colur	a de A	Água (mca)	- Não	estão	inclu	idas a	as per	das po	or atri	to	
Monofásico	Trifásico	Pot. (cv)	Succão	Elevação	Diâmetro rotor (mm)	máx.	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46
127V/220V	220V/380V	(CV)	(bsp)	(bsp)	Diâ	(mca)										1	/azão	(m³/h	1)									
		1/4			95,0	17	7,7	7,0	6,0	4,9	3,4	1,8	0,3															
CAM-W4C		1/3	1"	3/4"	99,0	18	8,5	7,7	6,9	6,0	5,0	3,9	2,6	0,9														
	CAM-W4-NE	1/2			110,0	21		8,3	7,7	7,0	6,2	5,2	3,9	2,5	1,2													
		3/4			130,0	32			9,3	9,0	8,6	8,2	7,7	7,1	6,5	5,6	4,5	3,2	1,8	0,8								
CAM-W6C	CAM-W6	1	1"	1"	136,0	35			9,3	9,0	8,6	8,3	7,9	7,5	7,0	6,4	5,7	4,8	3,8	2,5	1,3	0,4						
CAIVI-VV6C	CAIVI-W6	1½] 1	1	145,0	42						8,6	8,2	7,7	7,3	6,8	6,3	5,8	5,2	4,6	3,9	3,2	2,4	1,5	0,6			
		2]		156,0	48					8,2	7,9	7,6	7,3	7,0	6,7	6,3	6,0	5,6	5,2	4,7	4,2	3,7	3,1	2,5	1,9	1,3	0,6
		3/4			125,0	26					11,0	10,0	9,0	7,9	6,6	5,0	3,0											
		1			133,0	30					11,5	10,8	9,9	9,0	8,1	6,9	5,6	4,0	1,6									
CAM-W10	CAM-W10	1½	1½"	1" (FLG 1½")	143,0	33						12,8	12,3	11,7	11,0	10,3	9,3	8,2	6,7	4,6	1,8							
		2]	(1 LG 1/2)	153,0	40						14,4	13,9	13,4	12,8	12,2	11,5	10,8	9,9	8,9	7,7	6,1	4,1	1,5				
		3]		162,0	44						14,5	14,1	13,7	13,3	12,8	12,3	11,8	11,2	10,6	9,8	9,0	8,0	6,7	5,0	2,8		
		1½			129,0	30												12,2	8,7									
CAM-W14	CAM-W14	2	1½"	1¼" (FLG 1½")	135,0	35														15,2	12,1	6,8						
		3	1	(FLG 1/2)	148,0	41																14,8	13,1	11,1	8,6			
		3/4			96,0	15	14,6	13,7	12,8	11,7	10,3	8,2																
		1]		104,0	18		15,0	14,1	13,2	12,1	10,8	9,1															
CAM-W16	CAM-W16	1½	2"	1½" (FLG 2")	112,0	22			17,6	16,9	16,1	15,2	14,2	12,8	10,7													
		2	1	(FLG 2)	121,0	25				17,8	17,3	16,6	15,9	15,1	14,1	12,7	10,2											
		3]		135,0	32							17,9	17,3	16,7	16,0	15,2	14,2	12,9	10,6								
CAM-W19	CAM-W19	3			120,0	24		40,5	38,6	36,5	33,9	31,4	29,4	26,5	23,1	18,2												
CANA 14/2:	6444447	2	2½"	2" (FLG 2½")	113,0	21		36,2	34,0	31,5	28,7	26,1	23,2	18,5	13,1													
CAM-W21	CAM-W21	3	1	(FLG 2/2)	125,0	26						34,3	31,9	29,2	26,1	22,5	18,6											

FLG = Flange

Mod	delo		Tubu	lação	tro mr)	AMT			Α	ltura	Man	ométr	rica To	otal e	m me	tros d	le Col	una d	e Águ	ıa (mo	ca) - N	Vão es	stão i	ncluic	las as	perd	as poi	r atrit	0		
Monofásico	Trifásico	Pot. (cv)	Suc.	Elev.	âmet or (m	máx.	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50	52	54	56	58	60
220/440V	220/380V	(- ,	(bsp)	(bsp)	Diâ	(mca)												Vaz	ĭo (m	³/h)											
414 MJM	414 TJM				130,0	29	43,7	41,9	39,9	37,7	35,2	32,3	28,8	24,2	16,6																
415 MJM	415 TJM	4			135,0	31						34,4	31,3	27,7	23,3	17,1															
614 MJM	614 TJM	_	2½"	2	135,0	30	43,8	42,2	40,4	38,5	36,3	33,8	31,0	27,5	22,8																
615 MJM	615 TJM	Э	2/2	2	145,0	36								38,7	35,7	32,4	28,6	23,9													
645 MJM	645 TJM	7½			155,0	43													37,2	33,6	28,6	16,9									
667 MJM	667 TJM	10 +			180,0	60																						37,6	32,4	25,8	15,7

⁺ TENSÕES: Trifásicos a partir de 10cv - 220/380/440/760

Série CAM - Bombas Centrífugas de Aplicações Múltiplas

Aplicações: Residencial | Predial | Industrial | Agrícola

Mod	delo		Tubu	lação	5 E	AMT																					Altu	ıra Ma	ınomé	trica To
Monofásico	Trifásico	Pot.	Suc.		Diâmetro rotor (mm)	máx.	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50
	220V/380V	(cv)		(bsp)	Diâr	(mca)	-	_														-								
-		4	(- /	(33-137		42													22.0	22.0	21.6	20.2	10.7	16.0	140	Г				
420 MJM	420 TJM	4	2"	41/11	155,0	42													23,9	22,8	21,0	20,3				40.5	45.2			
620 MJM	620 TJM	5	2"	1½"	162,0	48																24,8	23,6	22,2	_	_	15,3			
650 MJM	650 TJM	7½			173,0	58																			30,0	28,8	27,5	26,0		22,3
430 MJM	430 TJM	4	1½"	1¼"	180,0	56																							11,2	9,5
630 MJM	630 TJM	5			189,0	64																							14,6	13,9
660 MJM	660 TJM	10*	3"	3"	150,0	32				81,8	80,0	78,1	76,1	73,8	71,3	68,5	65,3	61,4	56,2	47,8										
670 MJM	670 TJM	12½*	FLG	FLG	162,0	45								86,1	84,8	83,4	81,9	80,3	78,6	76,8	74,8	72,5	70,0	67,1	63,6	58,9	7,7			
680 MJM	680 TJM	15 ⁺			167,0	50									88,6	87,3	86,1	84,7	83,2	81,7	80,0	78,3	76,3	74,2	71,8	69,0	65,5	61,2	9,6	
677 MJM	677 TJM	12½*			180,0	60																							46,5	44,0
Sob consulta	687 TJM	15,0 +	2½"	2"	195,0	73																								
	697 TJM	20,0*			210,0	83																								
674 MJM	674 TJM	10 ⁺			200,0	78																								
685 MJM	685 TJM	12½+			220,0	92																								
690 MJM	690 TJM	15 ⁺	2"	1½"	230,0	101																								
695 MJM	695 TJM	20+			252,0	120																								
233 .713141	220 .3141	2			108,0	17		41,1	37,6	33.6	28,5	21 7																		
27-50*	27-50	3			118,0	22		. 1,1	37,0	59,6	<u> </u>		44,9	30 /	32.1															
		4	3"	2"		25				<u> </u>						35.4	27.0													
27 50 5415 5	27 50 711		(**)	(**)	125,0					63,2	59,1		51,0					20.0												
27-50 MJM	27-50 TJM	5			130,0	27					67,0	63,2	59,1					28,0	45.5	44.7	24.5	26.7								
		7½			140,0	35		-		4-	4-	68,5	66,7	64,5	61,8	58,7	54,3	51,0	46,9	41,8	34,6	26,5								
		1			115,0	18		22,8	21,1		17,1		11,8																<u> </u>	
31-20*	31-20	1½			123,0	22			25,5	24,0	-	20,6	18,6		_														<u> </u>	
		2	2½	1½"	130,0	27					27,3	25,8	24,1	22,2	20,1	17,7	14,7	10,5												
		3			137,0	31						28,9	27,6	26,2	24,7	23,0	21,0	18,5	15,3	9,7										
31-20 MJM	31-20 TJM	4			146,0	37						30,9	30,2	29,5	28,7	27,8	26,8	25,7	24,4	22,8	20,7	16,6								
		4			140,0	33										31,3	29,7	27,9	25,8	23,0	18,5									
E4 20 NAINA	E4 20 TIM	5	2"	1½"	148,0	39													31,4	29,7	27,7	25,2	21,7	13,9						
51-30 MJM	21-30 11101	7½	(FLG 2½")	(FLG 21/2")	168,0	56																		33,9	33,1	32,2	31,2	30,0	28,7	27,0
		10 ⁺	2/2)	2/2 /	180,0	63																					32,8	32,4	31,9	31,4
		10 ⁺			139,0	29								73,8	67,5	62,2	55,6	50,1												
63-90 MJM		12½+			152,0	37											-	 	67,8	63,0	57,2	50,1								
Sob consulta		15,0 ⁺	3"	2"	161,0	44											,	89,8	 	81,5	76,9	71,9	66,4	60,1	52.7	43,2				
	63-90 TJM	20,0 ⁺	(**)	(**)	172,0	55													_		96,9					89,9	86.2	81.0	74 6	67.0
		25,0 ⁺	, ,	, ,	184,0	65													30,2	31,0	30,3	30,0	30,3	33).	33, .	03,3	00,2	01,0	,0	07,0
		30,0 ⁺			195,0	74																								
					_	67																						62.7	62,0	60.0
		20,0			190,0																							02,7	02,0	00,6
		25,0 ⁺	2½"	2"	208,0	84																								
	89-62 TJM		(**)	(**)	220,0	94																								
		40,0 ⁺			234,0	108																								
		50,0 ⁺			248,0	127																								
		20,0	2½"	2"	203,0	77																								
	105-50 TJM		(**)	(**)	220,0	95																								
		30,0 ⁺			232,0	106																								
		20,0 ⁺	2½"	2"	217,0	85																								
	109-40 TJM	25,0 ⁺	(**)	(**)	235,0	101																								
		30,0 ⁺	` '	` '	250,0	119																								
		10.0 ⁺			148	31		117,8	114,1	110,1	105,9																			
		12,5 ⁺			155	35					120,4	116,5	112,4	108,0	103,2	98,0	92,4	86,0	78,8	70,2	59,4	44,0								
	40-115 TJM		4" (**)	3" (**)	163	41													96,2				65,9	53,8	35,4					
		20,0 ⁺	()	()	175	50												_	120,7	_						81,7	73,9	64,7	53,3	
		25,0 ⁺			182	57																			_	110,1				82,1
		40,0 ⁺			185,0	40,7													176,2	157,7	145,2									
	41-150 TJM	50,0 ⁺				47,3																				143,3	119.9	85.5		
		30,0 ⁺			193,0	52														171.6	164.2	156.5				120,5			82.1	
		40,0 ⁺	6"	4"	207,0	64														_,3	,-	, 5,5	. 5, 7			† 				144,01
	91-100 TJM		(**)	(**)	217,0	75																				_, 5,5		-50,7	,0	1
	22 200 13141	60,0 ⁺			228,0	84																								
		75,0 ⁺			242,0	97																								
Mod		73,0	Tubu	lacão																										
	l	Pot.	Tubu		Diâmetro rotor (mm)	AMT	4			10	12	4.4	10	10	30	22	24	36	30	20	22	24	20	20	40	42	44	4.0	40	F0
Monofásico		(cv)	Suc.	Elev.	iân tor	máx. (mca)	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50
220V/440V	220V/380V		(nsb)	(bsp)	□ 5	(iiica)																					Altu	ıra Ma	nomé	trica To

^{*} TENSÕES: Monofásico bivolt até 3cv - 127/220V (**) Opção Flangeada (FLG) * TENSÕES: Trifásicos a partir de 10cv - 220/380/440/760V

tal e	n met	tros de	- Colu	na de /	Água (mca) -	Não e	estão i	ncluid	as as r	erdas	por at	rito																				
52	54	56	58	60	62	64	66		70	72	74	76	78	80	82	84	86	88	90	92	94	96	98	100	102	104	106	108	110	112	11/	116	110
32	34	30					00	00	/0	/2	/4	70	/6	80	02	04	80	00	90	92	94	90	90	100	102	104	100	108	110	112	114	110	110
			1	Vazão	(m³/h)																				1							
19,9	16,6	11,3																															
7,3	4,0																																
13,1	12,2	11,1	9,7	7,6	3,8																												
11 5	38.6	35,8	33.3																														
11,5	30,0	33,0	33,3	40.0	16.2	12.2	39,8	25.7	20 E	22.0																							
				49,0			_	_			46.2	45.0	42.0	24.5																			
					55,5	53,7	52,0				_	<u> </u>	43,8	31,5																			
								15,1	11,4			1,7																					
									18,8	18,0	17,2	16,2	15,0	13,3			4,0	2,3	_														
															21,4	20,4	19,0	17,2	14,1	7,7	4,5	2,6	1,3										
																							11,7	11,5	11,2	10,9	10,6	10,3	9,9	9,4	8,8	8,0	1,0
24.5	17,6																																
		28.9	26.1	20,8																													
50,0	30,1	20,5	20,1	20,0																													
	49,3																																
97,5	92,1	86,2	79,5	71,8		_	_																										
				92,7	87,5	83,2	76,5	70,3	64,0	55,0																							
56,8	55,0	53,1	51,3	47,0	44,3	38,6																											
				66,8	66,3	66,1	65,5	64,3	63,7	62,4	60,5	57,5	53,1	47,8	42,9																		
												_		_			54.6	51,2	46.5	40.2													
												00,0	- 1,1			0.70	,-		_		66.3	64,3	61 9	59.0	549								
																		71,3	05,0	00,1	00,5				70,1	60.6	60.0	60.2	67.1	66 5	6E 7	61.2	E0 E
		40.0	40.6	40.1	47.5	46.0	45.0	44.7	12.1	41.4	20.7	22.5										71,5	71,4	70,8	70,1	09,0	09,0	00,3	07,4	00,5	03,7	01,3	36,3
		49,0	48,6	48,1	47,5	40,8	45,8	44,/	43,1	41,4			40 :	4	4	4	45 -	4	4	4	22 -										\vdash		
											48,7	48,4	48,1	47,8	47,5	47,2	46,7	45,8													\square		
																			47,8	47,5	47,0	46,5	45,9	45,3	44,3	41,0							
41,5	41,1	40,6	40,2	39,7	39,1	38,6	38,0	37,4	36,8	36,1	35,3	34,5																					
													35,8	35,3	34,6	34,0	33,3	32,5	31,7	30,9	29,9	28,8	27,5										
																				39,7	39,2	38,6	38,0	37,3	36,4	35,5	34,4	33,3	32,4	31,6	30,8	29,4	
					İ						İ																						
				-										-							-										\vdash		
72 -	<i>c</i> 2 2	F0.2	-	-			-															-									\vdash		
/3,4	03,2	50,3																															
L		L					L					L				L					L					_ 1						_ 7	
34,8	124,9	114,1	101,9	87,7																													
				149,4	141.2	132.5	123.2	113.2	102.2	89.7																							
3,7	,5						164,2				137 5	122 8	110 6	96.7																			
					1//,3	1/1,0	104,2								1/1 2	122.0	122 7	113,6	102.0	02.4													
				\/- ~	/ 2 //				1/9,2	1/3,2	10/,5	101,2	154,1	147,8	141,3	132,9	123,7	113,6	103,9	93,1													
			1	Vazão		1																											
52	54	56	58	60	62	64	66	68	70	72	74	76	78	80	82	84	86	88	90	92	94	96	98	100	102	104	106	108	110	112	114	116	118
tal e	n met	tros de	Colu	na de A	Água (mca) -	Não e	estão i	ncluid	as as p	erdas	por at	rito																				

Série CAM Incêndio

Aplicações: Combate a Incêndio

Carcaça em alumínio-silício e Ferro Fundido • Classe de isolamento: "B" (motoes IP 21) e "F" (motores IP 55) Grau de proteção: IP21 de 3/4 a 3cv e IP55 de 4 a 75cv • Pintura vermelha, padrão Corpo de Bombeiros

TENSÃO: BIVOLT MONOFÁSICO: ATÉ 3cv 127V/220V, A PARTIR DE 4cv 220/440V | TRIFÁSICO: 220V/380V | TRIFÁSICOS A PARTIR DE 10cv - 220/380/440/760V

Mod	delo		Tubu	lação	iro m	AMT				Alt	ura	Man	omé	trica	Tota	l em	metr	os de	e Colu	ına d	le Ág	ua (m	 nca) -	Não	estão	incl	uidas	as p	erdas	por	atrito)			
		Pot. (cv)	Suc	Flev	r (r	máx.	4	6	8	10 1	2	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50	52	54	56	58	60
Monofásico	Trifásico	(CV)	(bsp)	Elev. (bsp)	Diâmetro rotor (mm)	(mca)														Vaz	ão (n	n³/h)													
		3/4			125,0	26				1	1,0 1	0,0	9,0	7,9	6,6	5,0	3,0																		
C4441440	CAAA 14/40	1			133,0	30				1	1,5 1	0,8	9,9	9,0	8,1	6,9	5,6	4,0	1,6																
CAM-W10 c/ Flange	c/ Flange	1½			143,0	33					1	2,8 1	12,3	11,7	11,0	10,3	9,3	8,2	6,7	4,6	1,8														
t/ Flatige	t/ Flatige	2			153,0	40					1	4,4 1	13,9	13,4	12,8	12,2	11,5	10,8	9,9	8,9	7,7	6,1	4,1	1,5											
		3	1		162,0	44																9,0			5,0	2,8									
		1½	1		129,0	30												12,2	8,7																
CAM-W14	-	2	1		135,0	35														15,2	12,1	6,8													
c/ Flange	c/ Flange	3	1		148,0	41																	13,1	11,1	8,6										
		3/4	1		96,0	15	14,6	13,7	12,8	11,7 1	0,3	3,2																							
		1		2½"	104,0	18				13,2 1			9,1																				\Box	\neg	
CAM-W16	-	1½	(*)	(*)	112.0	22				16,91				12.8	10.7																			\neg	
c/ Flange	c/ Flange	2	1		121,0	25			_	17,81	-					12.7	10.2																	\neg	
		3	1		135,0	_				,-	,-		_						12,9	10.6															
		2			113.0			36.2	34.0	31,5 2	3.7 2	$\overline{}$	-			,-		,-	,-																
CAM-W21	CAM-W21	3	1		125,0				- 1,0	,-	_	-			-	22,5	18 6																		
416 MJM	416 TJM	4	1		138,0	-						1,5	, 1,3		20,1			_	19,0	13 2													\Box	\neg	
616 MJM	616 TJM	5	1		145,0						\top						_	_	26,8	_		12 1													
646 MJM	646 TJM	7½	1		155,0												31,3	23,3	20,0	23, 1	13)1	-	36,3	32 7	27 7	16 1							\Box	\neg	
666 MJM	666 TJM	10	1		180.0																	33,6	50,5	J =),		10,1					34 0	30.6	26,9	22 7	17 5
		2			108,0	-		41 1	37.6	33,6 2	3 5 2	1 7																			3 .,0	50,0	20,5	,,	27,0
27-50	27-50	3	1		118,0			12,2	_	59,65	-	-	14 9	39 4	32 1																		\neg	\dashv	
		4	3"	2½′′	125,0					63,2 5						35 4	27 9																		
27-50 MJM	27-50 TIM	5	(*)	(*)	130,0	-										44,8																			
27 33 IVIJIVI	27 33 13101	7½	1		140,0	-				0	_	-	_	-	-	_	-	<u> </u>	_	41 Q	34 6	26,5													
		1 /2			140,0	33					U	0,5	,,,	04,3	01,0	50,7	54,5	51,0	40,5	41,0	34,0	120,3													

Mod	delo		Tubu	ulação	9 E	áx.		Altu	ra Mar	nomét	rica To	otal en	n meti	ros de	Colun	a de A	Água (Não e	estão i	ncluid	las as į	perdas	por a	trito	
		Pot.	cção Isp)	ação sp)	meti r (m	1T má mca)	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50	52	54	56	58	60
Monofásico	Trifásico	(cv)	Sancg	Eleva (bs	Diâ	Vazão (m³/h)																				
		4			140,0	33	31,3	29,7	27,9	25,8	23,0	18,5														
51-30	51-30	5	2½"	2½"	148,0	39				31,4	29,7	27,7	25,2	21,7	13,9											
51-30	51-30	7½	FLG	FLG	168,0	56									33,9	33,1	32,2	31,2	30,0	28,7	27,0	24,5	17,6			
		10			180,0	63												32,8	32,4	31,9	31,4	30,8	30,1	28,9	26,1	20,8

Mod	elo		Tubu	lação	5 E	áx.				Altı	ura N	∕lano	métr	ica To	otal e	m m	etros	de C	oluna	a de /	Água	(mca) - Nâ	io es	tão ir	cluid	as as	per	das p	or atı	rito			
		Pot.	ão o)	ção o)	r (m	T mg	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50	52	54	56	58	60	62	64	66	68	70	72
Monofásico	Trifásico	(cv)	Sucçã (bsp	Eleva (bsp	Diâ	AM.		,											V	azão	(m³/	h)												
		10			139,0	29	73,8	67,5	62,2	55,6	50,1																							
63-90 MJM		12½			152,0	37			79,5	76,0	72,1	67,8	63,0	57,2	50,1																			
IVIJIVI	63-90	15¹	3"	2½"	161,0	44					89,8	85,8	81,5	76,9	71,9	66,4	60,1	52,7	43,2															
	TJM	20,0	(*)	(*)	172,0	55						98,2	97,6	96,9	96,6	96,3	95,4	93,4	89,9	86,2	81,0	74,6	67,0	59,4	49,3									
		25,0			184,0	65																		97,5	92,1	86,2	79,5	71,8	62,4	49,8				
		30.0			195.0	74																						92 7	875	83.2	76.5	70.3	64.0	55.0

Monofásico de 15cv: sob consulta

(*) Opção Flangeada (FLG)

TENSÃO: BIVOLT MONOFÁSICO: ATÉ 3cv 127V/220V, A PARTIR DE 4cv 220/440V | TRIFÁSICO: 220V/380V | TRIFÁSICOS A PARTIR DE 10cv - 220/380/440/760V

	1-1-		Tube	~ -		=			A t		44				-1	l - 6	/-		NI~-								
Mod	leio	Pot.		ulação 	Diâmetro	E AN		48		Manom	Т	58 60	metro 62	64	66	68	Ť	Ť			8 80	т.	erdas 84	86	88	90	92
Monofásico	Trifásico	(cv)	Suc. (bsp)	Elev. (bsp)	Diâm	mi (mi)		48	50	52 54	56	58 60	62	64			/U (m³/h)		74	76 7	8 80	82	84	86	88	90	92
		20,0 25,0 30,0		2½"	190, 208, 220,	0 8	4	7 62,0		6,8 55,0 Manom		66,8	66,3	66,1				e	66,0	5,5 64	62,9	9 60,0	57,8			46,5	40,2
	89-62 TJI	M Pot. (cv)	(*)	(*)	Diâmetro	MA (mm)	ix. 88	90		94 96		100 102			108	110	-	114						İ			
		40,0 50,0			234, 248,		-	3 69,8	68,1 6	66,3 64,3 71,9		59,0 54,9 70,8 70,1		69,0	68,3	67,4	66,5	65,7	51,3 5	8,5 55	5,2						
Mad	delo		Tubi	ulação					ltura A	1anomét	rica Tot	al om m	otros	do Coli	una d	lo Águ			ão ost	ño inc	luidas	ac nor	dac n	or atr	ito		
Monofásico	Trifásico	Pot.	_	Elev. (bsp)	Diâmetro rotor (mm)	AMT máx. (mca)	56 5	8 60		64 66		70 72	_		78	80 ão (m	82			88 9		1	96		100	102	104
	105-50 TJ	20,0 M 25,0 30,0	2½"	2½" (*)	203,0 220,0 232,0	77 95	49,0 48	3,6 48,	1 47,5	46,8 45,	8 44,7	43,1 41,		7 32,5 7 48,4				47,2	16,7 4		1,9 41,5 1,8 47,5	1	46,5	45,9	45,3	44,3	41,0
Mod	lelo		Tubul	lacão	0 (5)				ltura M	1anomét	rica Tot	al em m	etros	de Coli	ına d	ο Δσι	ıa (mo	a) - N	ão est	ão inc	luidas :	as ner	das n	or atr	ito.		
Monofásico	Trifásico	Pot. (cv)	Suc.	Elev. (bsp)	Diâmetro rotor (mm)	máx. (mca)	52 !		6 5		62				70	72	74	76	_	_	_	·				90	92
		20,0	(nsh)	(nsh)	217,0	85	41,5 4	1,1 4	0,6 40	,2 39,7	39,1	38,6 3	8,0 3	37,4 3		ão (m 36,1		34,5	5 33,	7 32,	7 31,	5	1		T		
				Ì		AMT			ltura N	1anomét													das p	or atr	ito		
	109-40 TJI	Pot. (cv)	2½" (*)	2½" (*)	Diâmetro rotor(mm)	máx. (mca)	78	30 8	32 8	4 86	88	90	92	94	96 Vazâ	98 ão (m	100 ³/h)	102	2 104	4 10	6 108	3 110) 1	12 1	14	116	118
		25,0 30,0			235,0 250,0	101 119	35,8 3	5,3 3	4,6 34	,0 33,3	32,5			29,9 2 39,2 3	28,8 38,6		37,3	36,4	4 35,	5 34,	4 33,	3 32,	4 31	1,6 3	0,8 2	29,4	
Modelo	Pot.	Tubula	ção	mu A	MT _			1	1	métrica 1										_	· ·	·	_				
Trifásico	(cv)		Elev. (Sp)	5 5 1	náx. nca)	30 3	2 34	36	38	40	42 4	14 46	48		0 5 ão (m	52 1 ³ /h)	54	56	58	60	62	64	66	6 6	8 7	70	72
91-100 TJM	30,0 1 40,0 50,0	6" (*)	4" (*)	07,0	52 1 64 75	71,6 164	1,2 156,	5 148,4	139,7	130,5 1 183,0 1		9,5 97, 8,5 160									1 141,2	122 [122	2 113	2 10	223	20.7
Modelo	50,0	Tubula		-	/5			Altura	Manor	nétrica 1	otal em	metros	de Co	oluna d											5,2 10	2,2	59,7
- Inducio	Pot.		Elev.	ו 🗠 נו	MT _ náx.	62 6	4 66	68	70			76 78		1	_		86	88	90	92	94	96	98		00 1	02	104
Trifásico		(bsp)			nca)	77 2 4 74		1457		440 24	22 5 42	20/440	5 05		ão (m	1 ³ /h)											
91-100 TJM	75,0	6" (*)			84 1 97	//,3 1/:	1,8 164,	2 15/,4	-	140,2 1 173,2 1	-				.,3 13	32,9 1	.23,7	113,6	103,9	93,1							
Modelo		Ø Tubı	ulacão	o (c	÷			Altur	a Mano	ométrica	Total e	m metro	s de c	coluna (de ág	ua (m	nca) - I	Vão e	stão ir	ncluída	as as ne	erdas r	or at	rito			
	Pot. (cv)	Suc.	Elev.	Diâmetro rotor (mm)	AMT máx. (mca)	6	8	10	12	14	16	18	20		$\overline{}$	24	26		28	30	32	34		36	38	4	40
Trifásico		(bsp)	(bsp)						T	T		1			zão (r			_									
40-115 TJM		4" (*)	3" (*)	148 155	31 35	117,8	114,1	110,1	105,9		96,6 112,4		103,	.2 98,	,0	71,0 92,4	86,	0 7	9,5	30,6 70,2	59,4						
Modelo	15,0	Ø Tubı	ılacão	163	41			Δltur	a Mano	métrica	Total o	120,2	116,			106,9			6,2	90,1	83,2			65,9	53,8	3 3	5,4
	Pot.	Suc.	Elev.	Diâmetro rotor (mm)	AMT máx. (mca)	24	26	28	30	32	34	36	38		T	42	44	$\overline{}$	46	48	50	52		54	56		58
Trifásico	(cv)	(bsp)	(bsp)	Diâ.	AM.										zão (r												
40-115 TJM	20,0	4" (*)	3" (*)	175 185	50 57	129,2	125,0	120,7	116,1	111,3	106,2	100,8 127,4	95,0 121,			81,7 110,1	73, 103		7,1	53,3 90,0	82,1	73,4	41 6	53,24	50,3	3	
	23,0			103	3,							-27,4	,		,- -	,_	100	, = 3	- ,-	33,0	02,1	, 5,		,	30,5		

(*) Opção Flangeada (FLG)

Aplicações: Residencial | Predial | Agrícola | Combate a Incêndio

Sistema de Pressurização com Diafragma

Tanque: Carcaça em chapa de aço. Pintura a base de tinta epoxy (resistência extra contra corrosão). Acabamento de alto brilho.

Diafragma: Borracha atóxica, resistente e flexível, facilmente substituível. Válvula pneumática.

Tanques de Pressão com Diafragma - Sistemas de Pressurização

O sistema convencional de uma instalação residencial compreende uma caixa (reservatório), em nível superior, para distribuição, por gavidade, de água pela rede hidráulica. A pressão, neste caso, é proporcional à altura de elevação da caixa. Considerando-se uma habitação simples, de um só pavimento, conclui-se que tal pressão será sempre reduzida, principalmente nos pontos mais próximos do nível do reservatório (ex: chuveiro com baixa pressão). Tal situação, somente poderá ser resolvida com gastos adicionais e elevados para a construção e instalação de uma torre de abastecimento com altura suficiente para proporcionar maior pressão.

O Sistema de Pressurização com Tanque de Pressão com Diafragma vem resolver definitivamente este problema, com simples instalação e manutenção. O Tanque de Pressão acoplado a uma bomba corretamente selecionada, é a solução prática e de fácil operação. Desta forma são obtidas pressões e vazões constantes e contínuas, sem despesas com obras.

Residências, apartamentos de cobertura, hotéis, restaurantes; para pressurização de lavatórios, chuveiros e duchas; em fazendas, para lavagem de estábulos, veículos e irrigação; redes de combate a incêndio; são algumas das aplicações, onde poderá ser incluído o uso industrial.

A grande vantagem deste processo, consiste em manter a rede hidráulica sempre pressurizada.

Outros sistemas obrigam a instalação da bomba abaixo do reservatório ("afogada") para garantir seu funcionamento. A bomba acoplada ao Tanque de Pressão com Diafragma poderá captar água de um reservatório, tanto acima quanto abaixo (cisterna, poços, etc.) e simultaneamente, pressurizar a rede hidráulica.

Recomenda-se a instalação de um reservatório superior, de emergência, para atender o consumo, no caso de constantes faltas de energia. Pode-se também instalar tanques de maior capacidade, ou ainda, associados em paralelo para promover maior autonomia de consumo.

TABELA 1

Peças de Utilização	Vazão (litros/seg)	Peso
Bebedouro	0,05	0,1
Banheira	0,30	1,0
Bidê	0,10	0,1
Bacia sanitária com caixa de descarga	0,15	0,3
Chuveiro	0,21	0,5
Máquina de lavar roupas ou louça	0,30	1,0
Torneira de lavatório	0,20	0,5
Torneira de pia ou tanque	0,30	1,0
Válvula de descarga (*)	1,90	40,0

^(*) Deve-se evitar que as válvulas de descarga, tipo Hydra, sejam alimentadas pelo Sistema de Pressurização, pois elas não necessitam de pressões elevadas e já tem altas vazões.

TABELA 2: TABELAS CONFORME NORMA NBR-5626 DA ABNT

Soma dos Pesos	Vazão m³∕h	Soma dos Pesos	Vazão m³∕h
0,5	0,76	8,0	3,05
1,0	1,10	8,5	3,15
1,5	1,30	9,0	3,24
2,0	1,50	9,5	3,33
2,5	1,70	10,0	3,40
3,0	1,87	11,0	3,60
3,5	2,00	12,0	3,74
4,0	2,16	15,0	4,18
4,5	2,30	20,0	4,83
5,0	2,40	25,0	5,40
5,5	2,50	30,0	5,90
6,0	2,64	40,0	6,80
6,5	2,70	50,0	7,64
7,0	2,86	100,0	10,80
7,5	2,90		

	Volume	Pres	são	Pres	ssão	Pres	são	Dud (·		Vazão Máxima na		Bomba		Tubu	lação
Modelo do Tangue	do Tangue	Lig	ga	Mé	dia	Des	liga	Pre-C	Carga	de Funcionamento da Motobomba	Pressão Média de Operação	Monofásica	Trifásica**	Potência	(B	SP)
. ,,	(litros)	mca	psi	mca	psi	mca	psi	mca	psi	(partidas/hora)	(m³/h)	127V/220V	220V/380V	(cv)	Sucção	Elevação
TDV-020-HOR	20	1.4	20	21	20	20	40	12	10	60	2.0	AD 2D*		1/2	3/4"	3/4"
TDV-024-VER	24	14	20	21	30	28	40	13	18	60	3,0	AP-2R*		1/2	3/4	3/4
TD1/ 050 1100	60	14	20	21	30	28	40	13	18	50	3,0	AP-2R*		1/2	3/4"	3/4"
TDV-060-HOR	60	14	20	21	30	28	40	13	18	60	4,5	CP-6R*	CP-6R	3/4	1"	1"
TDV-100-HOR	400	4.4	20	24	20	20	40	42	40	50	5.0	CD CD*	CD CD	4.0	4//	4//
TDV-100-VER	100	14	20	21	30	28	40	13	18	50	5,0	CP-6R*	CP-6R	1,0	1"	1"
TDV-100-HOR	100	14	20	21	30	28	40	13	18	50	6,5	CAM-W6	CAM-W6	1.0	1"	1"
TDV-100-VER	100	14	20	21	30	28	40	13	10	50	0,5	CAIVI-VV6	CAIVI-VVO	1,0	1	1
TDV-100-HOR	100	14	20	21	30	28	40	13	18	50	10,0	CAM-W10	CAM-W10	1,0	1½"	1"
TDV-100-VER	100	14	20	21	30	20	40	15	10	30	10,0	CAIVI-VV10	CAIVI-VV10	1,0	1/2	1
TDV-200-HOR	200	14	20	21	30	28	40	13	18	40	11,0	CAM W-10	CAM W-10	1½	1½"	1"
TDV-300-HOR	300	14	20	21	30	28	40	13	18	40	16,5	CAM W-16***	CAM W-16***	3	2"	1½"
TDV-500-VER	500	14	20	21	30	28	40	13	18	40	33,0	414MJM***	414TJM***	4	21/2"	2"

ATENÇÃO: *Bombas com tensão única (120V ou 220V - Monofásicas) **Montagem com bombas trifásicas (sob consulta) ***Conjuntos desmontados compostos de bomba, pressostato e tanque de pressão

A pressão de trabalho padrão é 20-40 psi (14-28 mca) e para os demais intervalos de operação(30-50; 40-60; 50-70 e 60-80) são especiais e sob consulta.

			Bateria de Ta	inques de Pressão Da	ncor			
			psi	30	40	50	60	70
	Média d	e operação	mca	21	28	35	42	49
			psi	20	30	40	50	60
	Pressã	o de Ligar	mca	14	21	28	35	42
			psi	40	50	60	70	80
	Pressão	de Desligar	mca	28	35	42	49	56
	. ~	L D / C	psi	18	27	36	46	55
	Pressão d	le Pré-Carga	mca	13	19	25	32	39
Modelo	Frequência	Volume	Quantidade de Tanques		Vazão na Pr	essão Média de Ope	ração (m³/h)	
	Partida/hora		Z		I	Bombas Selecionada	S	
TDV CO			4	6,0	5,2	4,0	1,9	
TDV 60		60	1	CAM-W6 - 3/4cv	CAM-W6 - 1,5cv	CAM-W6 - 2,0cv	CAM-W6 - 2,0cv	
TDV 60		60	2	7,0	5,2	4,0	1,9	
TDV 60		60	2	CAM-W6 - 1,5cv	CAM-W6 - 1,5cv	CAM-W6 - 2,0cv	CAM-W6 - 2,0cv	
TDV 60		60	3	11,0	11,3	8,0	1,9	
100 00		00	3	CAM-W10 - 1,5cv	CAM-W10 - 2,0cv	CAM-W10 - 3,0cv	CAM-W6 - 2,0cv	
TDV 100		100	1	6,0	5,2	4,0	1,9	
157 100		100	1	CAM-W6 - 3/4cv	CAM-W6 - 1,5cv	CAM-W6 - 2,0cv	CAM-W6 - 2,0cv	
TDV 100		100	2	11,0	5,6	4,0	1,9	
.51 100		100	-	CAM-W10 - 1,5cv	CAM-W6 - 2,0cv	CAM-W6 - 2,0cv	CAM-W6 - 2,0cv	
TDV 100		100	3	13,0	11,3	8,0		14,2
			-	CAM-W10 - 3,0cv	CAM-W10 - 3,0cv	CAM-W10 - 3,0cv		630 - 5,0cv
TDV 100		100	1	6,0	5,2	4,0	1,9	
				CAM-W6 - 3/4cv	CAM-W6 - 1,5cv	CAM-W6 - 2,0cv	CAM-W6 - 2,0cv	
TDV 100		100	2	13,5	7,3	8,0		
				CAM-W10 - 2,0cv	CAM-W10 - 1,5cv	CAM-W10 - 3,0cv		
TDV 100		100	3	16,5 CAM-W16 - 3,0cv	11,3	14,0		
	40			13,5	CAM-W10 - 2,0cv	CAM-W14 - 3,0cv		
TDV 200		200	1	CAM-W10 - 2,0cv	CAM-W10 - 2,0cv	8,0 CAM-W10 - 3,0cv		
				33,0	23,3	14,0		14,2
TDV 200		200	2	414 - 4,0cv	415 - 4,0cv	CAM-W14 - 3,0cv		630 - 5,0cv
				35,0	23,3	14,0		
TDV 200		200	3	614 - 5,0cv	415 - 4,0cv	CAM-W14 - 3,0cv		
				16,5	11,3	14,0		
TDV 300		300	1	CAM-W16 - 3,0cv	CAM-W10 - 3,0cv	CAM-W14 - 3,0cv		
				35,0	23,3	14,0		
TDV 300		300	2	620 - 5,0cv	415 - 4,0cv	CAM-W14 - 3,0cv		
TD1/222		265	_	70,0	35,7	71,0		
TDV 300		300	3	660 - 10,0cv	615 - 5,0cv	670 - 12,5cv		
TDV 500		E00	1	33,0	23,3	14,0		
TDV 500		500	1	414 - 4,0cv	415 - 4,0cv	CAM-W14 - 3,0cv		
TDV 500		500	2	84,0	35,7	71,0		45,0
15 7 300		500	4	670 - 12,5cv	615 - 5,0cv	670 - 12,5cv		677 - 12,5cv
TDV 500		500	3	88,0	83,2	77,0		45,0
				680 - 15,0cv	680 - 15,0cv	680 - 15,0cv		677 - 12,5cv

Sistemas de Pressurização com Inversor de Frequência

Aplicações: Residencial | Predial | Agrícola

Tabela de Especificações

O SISTEMA DE PRESSURIZAÇÃO DANCOR é fornecido regulado com a pressão de operação indicada na tabela de especificações, que se mantem constante até a vazão máxima indicada na mesma tabela. A pressão diminuirá se for ultrapassada aquela vazão, acompanhando a curva da bomba, operando na sua rotação máxima.

A pressão pode ser alterada desde que observados os seguintes limites:

- 1. A pressão de operação deverá ser inferior à pressão máxima da bomba, à rotação nominal do motor.
- 2. A pressão mínima de operação recomendada está limitada aos valores indicados na tabela de especificações, o que permitirá uma vazão ligeiramente superior.

MODELO		1SPI20-11	2SP120-14	3SPI38-12
Pressão de operação	mca	20	20	38
Vazão máx. à pressão de operação	m³/h	10,7	13,8	12,3
Somatório dos pesos	-	95	165	130
Pressão mínima de operação	mca	15	15	35
Vazão máx. à pressão mínima de operação	m³/h	13	14,9	14,2
Somatório dos pesos	-	150	190	175
Pressão máxima	mca	31	40	41
Temperatura máxima do líquido bombeado	°C		80	
Temperatura ambiente máxima	°C		40	
Volume do tanque hidropneumático	litros		8	
Potência nominal da bomba	kW	0,74	1,47	2,21
Fotericia nominai da bomba	cv	1	2	3
Corrente máxima monofásica	A	11,0	19,5	28,4
Corrente máxima trifásica	A	5,8	15,0	10,3
	V		220	
Alimentação	-	Mon	ofásica ou Trif	ásica
	Hz		50/60	
Peso líquido	kgf	26	30	33

Ponto de trabalho Requerido

Determine a vazão requerida pela rede hidráulica, **usando as tabelas da página 12 (Tanque TDV)**, que estão de acordo com a norma ABNT NBR 5626. Relacione todos os pontos de utilização e determine a somatória dos pesos, utilizando a tabela 1. Utilize a tabela 2, para determinar a vazão requerida, correspondente à somatória dos pesos.

Tabelas de Seleção

Escolha o sistema que, para a pressão de operação determinada, garanta uma vazão acima da requerida. A tabela a seguir permite selecionar o sistema de pressurização adequado, em função do Ponto de Trabalho Requerido. É mostrada a vazão máxima à pressão constante, regulada de fábrica. Para vazões acima da máxima indicada, a pressão diminui, de acordo com a curva característica da bomba operando à rotação nominal. Caso se deseje uma pressão de operação diferente da padrão, contatar a Assistência Técnica Dancor, lembrando que não se recomendam pressões abaixo da mínima indicada.

Modelo (Mon. e Tri.)	Bocais I	Rosca BSP	Pressão de Operação	mca	15	18	20	24	28	32	35	38	40
	Sucção	Descarga			(2)		(1)				(2)	(1)	
1SPI20-11					13,0	11,7	10,7	8,2	4,5				
2SPI20-14	1½"	1½"	Vazão máx. com pressão constante	m³/h	14,9	14,3	13,8	12,7	11,3	9,3	6,5	2,3	
3SPI38-12			constante								14,2	12,3	8,6

(1) Pressão de operação (regulada de fábrica) (2)

(2) Pressão mínima de operação

Tabela De Seleção Simplificada Para Uso Coletivo

Para conjuntos habitacionais, a tabela abaixo mostra a quantidade máxima de unidades (casas ou apartamentos), que podem ser supridos por cada Sistema de Pressurização Dancor, de acordo com a configuração de pontos de utilização de cada uma.

		PONTOS D	E UTILIZAÇÃO PO	R UNIDADE HAB	ITACIONAL			NÚMER	O MÁXIMO DE UI	
	BANH	EIROS		COZI	NHA	LAVAN	IDERIA		HABITACIONAIS	
Chuveiro	Lavatório	Caixa de Descarga	Banheira	Pia	Lava Louças	Tanque	Lava Roupas	1SPI20-11	2SPI20-14	3SPI38-12
1		1		1		1		39	68	24
1	1	1	1	1	1	1	1	21	37	29
2	2	2		1		1		27	48	38
2	2	2	1	1	1	1	1	21	37	29
2	2	2		2	1	1	1	13	23	18
3	3	3	1	2	1	1	1	11	32	25
4	4	4	2	2	1	1	1	9	16	12

OBS: Em instalações hidráulicas com válvulas de descarga, estas devem ser alimentadas diretamente pelo reservatório, separadamente da rede alimentada pelo sistema de pressurização. Recomendamos que o dimensionamento seja realizado por um profissional especializado

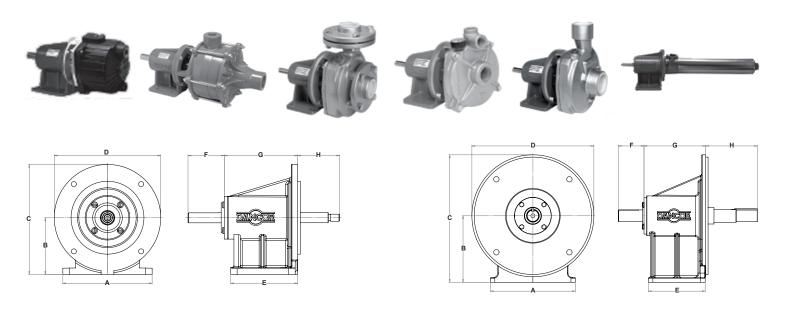
Smart Jet / Sistemas de Pressurização

Aplicações: Residencial | Predial | Agrícola | Combate a Incêndio

O Sistema de Pressurização Smart Jet é perfeito para ser instalado na rede de abastecimento de água de sua residência, garantindo uma pressão de água uniforme nos pontos de consumo. Utilizando tecnologia de última geração, com o emprego de um microprocessador, o Sistema de Pressurização Smart Jet assume o controle de sua rede de forma SILENCIOSA, atuando eficazmente nas situações em que a pressão da linha atinja a pressão máxima estipulada, e caso haja falta de fluxo, a função de tempo entra em funcionamento, avaliando o momento que o abastecimento de água tenha sido normalizado. Suporta pressões até 60 mca.

Sistema de Pressurização AP-2R

Sistema de Pressurização AP-3C


Sistema de Pressurização CP-4R

MODELO		CV	Consumo kWh/h	Vazão (l/h)	Pressão máxima (mca)	Atende a:
	350 W	1/4	0,26	3.000	17	2 - Chuveiros 2 - Tanques ou pias 2 - Lavatórios 2 - Bidês 1 - Banheira 1 - Máquina de lavar roupa ou louças 2 - Bacias sanitárias com caixas de descargas
SMART JET CP-4R	450 W	1/3	0,53	4.000	19	3 - Chuveiros 3 - Tanques ou pias 3 - Lavatórios 3 - Bidês 1 - Banheira 2 - MáquinaS de lavar roupa ou louças 3 - Bacias sanitárias com caixas de descargas
	600 W	1/2	0,99	5.000	23	 4 - Chuveiros 4 - Tanques ou pias 4 - Lavatórios 4 - Bidês 2 - Banheiras 3 - Máquinas de lavar roupa ou louças 4 - Bacias sanitárias com caixas de descargas
SMART JET AP-2R	350 W	1/4	0,26	2.000	24	1 - Chuveiro 1 - Tanque ou pia 1 - Lavatório 1 - Bidê
	450 W	1/3	0,53		27	1 - Bacia sanitária com caixa de descarga
SMART JET AP-2R	600 W	1/2	0,99		34	2 - Chuveiros
	450 W	1/3	0,53		33	2 - Tanques ou pias 2 - Lavatórios
SMART JET	600 W	1/2	0,99	3.000	41	2 - Bidês 1 - Banheira
AP-3C	750 W	3/4	1,24		49	1 - Máquina de lavar roupa ou louças
	1000 W	1	1,38		57	2 - Bacias sanitárias com caixas de descarga

Bombas com Mancal

O acionamento de bombas através de polias e correias, é possível através das bombas com mancal. A faixa efetiva de trabalho de cada modelo de bombas Dancor, conforme consta em nossos catálogos e manuais, está condicionada à potência nominal, indicada em "cv" (incluindo os fatores de serviço) do motor com 3.500 rpm, sendo portanto a potência mínima exigida.

MODE	100			DIMEN	ISÕES	GERAIS	6 (mm)			Peso
MODE	LUS	Α	В	С	D	Е	F	G	Н	(kg)
N 4 i -	N.° 2	140	00.0	172.4	167	105		115	CE E	4.01
Mancais	2 MS	140	88,9	172,4	167	105	57	115	65,5	4,91

N401	DELOS		DIMENSÕES GERAIS (mm)									
IVIOL	JELU3	Α	В	С	D	E	F	G	Н	(kg)		
	N.° 5	148	112	194,5	165	138	71,5	145	108,15	9,00		
Mancais	N.° 10	190	160	273	226	133,5	71,5	145	108,200	12,40		
IVIdIICals	N.° 20	190	160	273	226	133,5	69,5	147	137,35	10,06		
	N.° 30	230	180	345	330	153,5	69,5	167	139,65	23,75		

Selo Mecânico

Faces de Vedação

- Grafite
- Cerâmica
- Carbeto de silício

Elastômeros

- Nitrílica (Buna N)
- Viton ®
- EPDM

» Pressão: 12 bar (máx.)

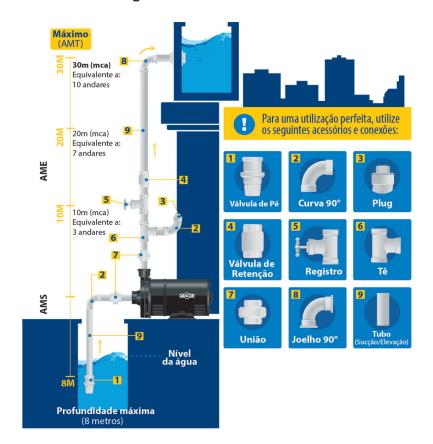
» Temperatura:

• Nitrílica: -35°C até 100°C

• EPDM: -45°C até 150°C

• Viton: -25°C até 200°C

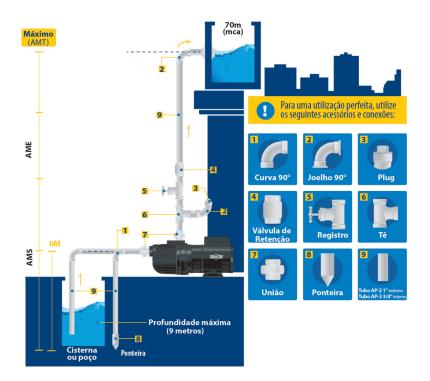
» pH:


• Nitrílica: 6 à 8

• Viton 3 à 10

Mola do selo
• Aço inox 304

Dimensionamento


Bombas Centrífugas

• Vazão do projeto - 2,0 m³/h • Diâmetro das tubulações de sucção - 1" • Diâmetro das tubulações de recalque - 3/4" • Desenho da instalação Determinação dos Parâmetros AMS - ALTURA MANOMÉTRICA DE SUCÇÃO (1") Desnível de Succão.....2.0m Comprimento do tubo.......6,0 m Comprimento Equivalente..... Perda de carga:....= <u>19,9 x 5,4</u> =....= 1,07 m 100 AME - ALTURA MANOMÉTRICA DE ELEVAÇÃO (3/4") Desnível de Elevação......15 m Comprimento do tubo......20,0 m Válvula de retanção......2,4 m Registro de gaveta......0,2 m Comprimento equivalente......23,8 m AME----------18,92 mca AMT - ALTURA MANOMÉTRICA TOTAL:

SEQUÊNCIA DE OPERAÇÃO

Bombas Autoaspirantes

SEQUÊNCIA DE OPERAÇÃO

AMS 3,07 m AME 18,92 m AMT 21,99m ≈ 22 mca

- Vazão do projeto 2,0 m³/h
- Diâmetro das tubulações de sucção 1"
- Diâmetro das tubulações de recalque 3/4"

Bomba Modelo: CP-6 3/4cv - CAM-W6 3/4cv

• Desenho da instalação

Determinação dos Parâmetros

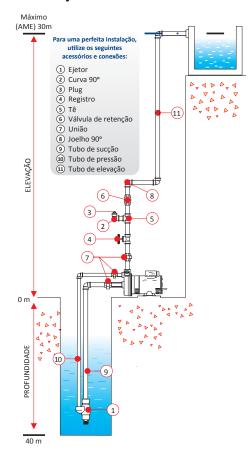
AMS - ALTURA MANOMÉTRICA DE SUCÇÃO (1'')

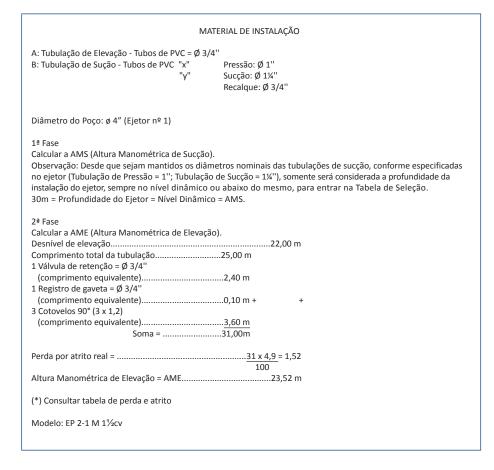
Desnível de Sucção	2,0 r	m
Comprimento do tubo	6,0 m	
Curva de 90°	-,-	+
Comprimento Equivalente		
Perda de carga:= <u>6,6 x 5,4</u> =	0,36 ı	m
100		
AMS	2,36 mg	ca
AMR - ALTURA MANOMÉTRICA DE RECALQUE (3/4")		

Desnível de Elevação		15 m
Comprimento do tubo	20,0 m	
Válvula de retanção	2,4 m	
Cotovelo de 90°	1,2 m	
Registro de gaveta	0,2 m	
Comprimento equivalente	23,8 m	
Perda de Carga: = 23.8 x 16.5 =		=3 9 m

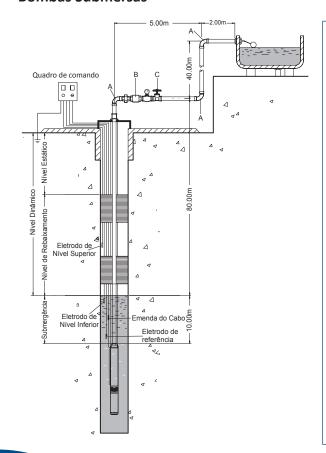
100

AMR------18 9 mca


> AMT - ALTURA MANOMÉTRICA TOTAL: AMS 2,36 m


AMR 18,9 m AMT 21.26 m

Bomba Modelo: AP-2R 1/2cv


Dimensionamento

Bombas Ejetoras

Bombas Submersas

DADOS PARA ELABORAÇÃO DOS CÁLCULOS

Tubulação de ferro galvanizado....... = Ø 1¼"

Conexões: A) Cotovelo....... = Ø 1¼"

B) Válvula de Retenção.... = Ø 1¼"

C) Registro de Gaveta..... = Ø 1¼"

Um poço tubular com diâmetro de 6" apresenta uma capacidade de produção de 4,00m³/h.

A profundidade de instalação da bomba será de 80m (posicionamento abaixo do eletrodo de nível inferior). Calcular uma bomba Dancor, Linha SPP, com vazão aproximada à capacidade do poço, para elevar a água a 40m de altura acima do nível do solo, com uma tubulação de ferro galvanizado nova = Ø 1½".

Cálculo Único:

Altura Manométrica de Elevação (AME) = AMT

O desnível de elevação sempre será contado a partir do nível dinâmico (posicionamento da instalação do eletrodo de nível inferior) até o ponto de decarga:

Perda por Atrito Real = 143,4 x 4,8%..... = <u>6,88 m</u> AMT (mca).....= 126,88 m

Consultado a Tabela de Seleção pág. 25, encontramos a indicação do modelo da bomba modelo: 3.2-S-40 $5\frac{1}{2}$ cv - 5.4-S-29 4 cv, com a vazão 4,40m³/h, como a melhor opção na AMT.

Conversão de unidades de Medida

Conversão de Unidade de Medidas

Grandeza	Para Converter	Címbolo	Multiplicado por =>	Símbolo	Para Obter
Grandeza	Para Obter	Símbolo	Dividido por <=	Símbolo	Para Converter
	Metros	m	3,281	ft	Pés
6	Polegadas	11	25,4	mm	Milímetros
Comprimento	Quadra		132	m	Metros
	Quilômetros	Km	0,6214	mile	Milhas
	Alqueire do norte		27.225	m²	Metros quadrados
	Alqueire mineiro		48.400	m²	Metros quadrados
	Alqueire paulista		24.200	m²	Metros quadrados
	Ares	а	100	m²	Metros quadrados
Área	Hectares	На	10.000	m²	Metros quadrados
	Metros quadrados	m²	0,0001	На	Hectares
	Quilômetros quadrados	Km²	0,3861	Miles ²	Milhas quadradas
	Quilômetros quadrados	Km²	100	На	Hectares
	Quadra quadrada		17.424	m²	Metros quadrados
	Litros	1	0,264	gal (USA)	Galões americanos
	Litros	i	0,353	ft ³	Pés cúbicos
Volume	Metros cúbicos	m³	264	gal (USA)	Galões americanos
Volume	Metros cúbicos	m ³	35,31	ft ³	Pés cúbicos
	Metros cúbicos	m³	1000	1	
				I/h	Litros
	Litros por segundo	I/s	3.600	,	Litros por hora
	Litros por minuto	l/min	0,0353	ft³/min	Pés cúbicos por minuto
	Litros por hora	I/h	0,00059	ft³/min	Pés cúbicos por minuto
Vazão	Litros por segundo	I/s	15,85	gal/min	Galões por minuto
	Litros por minuto	I/min	0,264	gal/min	Galões por minuto
	Metros cúbicos por hora	m³/h	0,59	ft³/min	Pés cúbicos por minuto
	Metros cúbicos por hora	m³/h	4,403	gal/min	Galões por minuto
	Metros cúbicos por hora	m³/h	1.000	l/h	Litros por hora
	Atmosfera	atm	1,033	kgf/cm²	Quilogramas por centímetro quadrado
	Metros de coluna de água	mca	3,281	ft H₂O	Pés de coluna de água
	Metros de coluna de água	mca	0,1	kgf/cm²	Quilogramas por centímetro quadrado
	Libras por polegada quadrada	Lb/Pol ²	0,703	mca	Metros de coluna de água
Pressão	Quilogramas por centímetro quadrado	kgf/cm²	14,22	Lb/Pol ²	Libras por polegadas quadradas
	Quilogramas por centímetro quadrado	kgf/cm²	10	mca	Metros de coluna de água
	Bar	bar	10	mca	Metros de coluna de água
	Mega Pascal	MPa	10	bar	Bar
	Mega Pascal	MPa	101,9716	mca	Metros de coluna de água
	Mega Pascal	MPa	10,1971	kgf/cm²	Quilogramas por centímetro quadrado
Peso	Libras	Lb	0,4536	kg	Quilogramas
resu	Quilogramas	kg	2,2045	Lb	Libras
	Metros por segundo	m/s	3,281	ft/sec	Pés por segundo
	Metros por segundo	m/s	3,6	km/h	Quilômetros por hora
Velocidade	Metros por minuto	m/min	0,03728	mile/h	Milhas por hora
	Quilômetros por hora	km/h	0,91134	ft/sec	Pés por segundo
	Quilômetro por hora	km/h	0,27778	m/s	Metros por segundo
	Cavalos vapor	CV	0,7355	kW	Quilowatts
	Cavalos vapor	CV	0,9863	HP	Horse Power
2	Cavalos vapor	cv	735,5	W	Watt
Potência	Quilowatt	kW	1.000	W	Watt
	Megawatt	MW	1.000.000	W	Watt
	Quilowatts	kW	1,341	НР	Horse Power
Temperatura	Graus Celsius + 17,78	°C	1,8	°F	Graus Farenheit

Tabela de Perda de Carga em Tubulações

														S (valor										
	1	1				em de p							1											
Vazão	PVC	F°F°	PVC	F°F°	PVC	F°F°	PVC	F°F°	PVC	F°F°	PVC	F°F°	PVC	F°F°	PVC	F°F°	PVC	F°F°	PVC	F°F°	PVC	PVC	PVC	Vazão
m³/h		25mm)	1" (32	<u>_</u>	-	10mm)		0mm)	2" (6	0mm)	2½" (7	75mm)	3" (8	5mm)	4" (11	.0mm)	5" (14	0mm)	6" (16	0mm)	200mm	250mm	300mm	m³/h
0,5	1,5	1,3	0,5	0,4	0,1	0,1	0,1	0,1	0.1	0.1														0,5
1,0	4,9 10,0	4,8 10,1	1,6 3,3	1,6 3,4	0,4	0,4	0,2	0,2	0,1	0,1														1,0
2,0	16,5	17,2	5,4	5,8	1,4	1,5	0,3	0,4	0,1	0,1	0,1	0,1												2,0
2,5	24,4	26,1	8,0	8,8	2,1	2,3	1,2	1,1	0,4	0,3	0,1	0,1												2,5
3,0	33,6	36,5	11,0	12,3	2,9	3,2	1,6	1,5	0,5	0,5	0,1	0,1	0,1	0,1										3,0
3,5	44,0	48,6	14,4	16,4	3,8	4,2	2,1	2,0	0,6	0,6	0,2	0,2	0,1	0,1										3,5
4,0	55,6	62,2	18,2	21,0	4,8	5,4	2,7	2,6	0,8	0,8	0,2	0,2	0,1	0,1										4,0
4,5	68,3	77,3	22,3	26,1	6,0	6,7	3,3	3,2	1,0	1,0	0,3	0,3	0,1	0,1										4,5
5,0	82,2	94,0	26,8	31,7	7,2	8,1	4,0	3,9	1,2	1,2	0,3	0,3	0,1	0,2										5,0
5,5	97,1		31,7	37,8	8,5	9,7	4,7	4,6	1,4	1,4	0,4	0,4	0,2	0,2		0,1								5,5
6,0			36,9	44,4	9,9	11,4	5,4	5,4	1,6	1,7	0,5	0,5	0,2	0,2	0,1	0,1								6,0
6,5 7,0			42,5 48,4	51,5 59,1	11,3	13,2 15,2	6,3 7,1	6,3 7,2	1,9 2,1	2,0	0,5	0,5	0,2	0,2	0,1	0,1								6,5 7,0
7,5			54,6	67,1	14,6	17,2	8,0	8,2	2,1	2,5	0,0	0,0	0,3	0,3	0,1	0,1								7,0
8,0			61,1	75,6	16,3	19,4	9,0	9,2	2,4	2,0	0,7	0,7	0,3	0,3	0,1	0,1								8,0
8,5			67,9	84,6	18,1	21,7	10,0	10,3	3,0	3,2	0,8	0,9	0,4	0,4	0,1	0,1								8,5
9,0			75,1	94,0	20,0	24,1	11,1	11,5	3,3	3,6	0,9	1,0	0,4	0,5	0,1	0,1								9,0
9,5			82,5		22,0	26,7	12,2	12,7	3,6	4,0	1,0	1,1	0,4	0,5	0,1	0,1								9,5
10			90,3		24,1	29,3	13,3	13,9	4,0	4,4	1,1	1,2	0,5	0,5	0,1	0,2		0,1						10
12					33,1	41,1	18,3	19,5	5,4	6,1	1,5	1,7	0,7	0,8	0,2	0,2	0,1	0,1						12
14					43,4	54,6	24,0	25,9	7,1	8,1	2,0	2,3	0,9	1,0	0,2	0,3	0,1	0,1						14
16					54,8	69,9	30,3	33,2	9,0	10,4	2,5	2,9	1,1	1,3	0,3	0,4	0,1	0,1						16
18					67,4	87,0	37,2	41,3	11,1	12,9	3,1	3,6	1,4	1,6	0,4	0,4	0,1	0,2						18
20					81,0		44,8	50,2	13,3	15,7	3,7	4,4	1,6	2,0	0,5	0,5	0,2	0,2	0,1	0,1				20
25							66,2	75,8	19,7	23,7	5,5	6,6	2,4	3,0	0,7	0,8	0,2	0,3	0,2	0,2				25
30							91,1		27,1	33,3	7,6	9,3	3,3	4,2	0,9	1,2	0,3	0,4	0,2	0,3				30
35 40									35,5	44,3	10,0	12,4	4,4	5,6	1,2	1,5	0,4	0,6	0,3	0,4	0.1			35 40
45									44,8 55,1	56,7 70,4	12,6 15,5	15,8 19,7	5,5 6,8	7,1 8,9	1,5 1,9	2,0	0,5	0,7	0,3	0,5	0,1			45
50									66,2	85,6	18,6	23,9	8,1	10,8	2,3	3,0	0,7	1,1	0,4	0,0	0,1			50
55									78,2	05,0	22,0	28,5	9,6	12,9	2,7	3,5	0,9	1,3	0,6	0,9	0,2			55
60									91,1		25,6	33,5	11,2	15,1	3,1	4,2	1,1	1,5	0,7	1,1	0,2			60
65											29,5	38,9	12,9	17,5	3,6	4,8	1,3	1,7	0,8	1,2	0,3			65
70											33,5	44,6	14,6	20,1	4,1	5,5	1,4	2,0	0,9	1,3	0,3	0,1		70
75											37,8	50,7	16,5	22,8	4,6	6,3	1,6	2,3	1,1	1,6	0,3	0,1		75
80											42,4	57,1	18,5	25,7	5,1	7,1	1,8	2,6	1,2	1,8	0,4	0,1		80
85											47,1	63,8	20,6	28,8	5,7	7,9	2,0	2,9	1,3	2,0	0,5	0,1		85
90											52,1	71,0	22,7	32,0	6,3	8,8	2,2	3,2	1,4	2,2	0,5	0,2		90
95											57,2	78,4	25,0	35,3	6,9	9,7	2,5	3,5	1,6	2,4	0,5	0,2		95
100											62,6	86,2	27,3	38,9	7,6	10,7	2,7	3,9	1,7	2,6	0,6	0,2	0.1	100
150											86,1		37,6 55,6	54,5 82,3	10,4 15,4	15,0 22,7	3,7 5,5	5,4 8,2	3,5	3,8 5,5	0,8 1,2	0,3	0,1	150
200													91,9	02,3	25,5	38,6	9,0	14,0	5,8	10,0	2,0	0,5	0,2	200
250													71,5		37,7	58,3	13,3	21,1	8,5	14,5	2,0	1,0	0,3	250
300															51,8	81,7	18,3	29,6	-,0	,5	4,1	1,4	0,6	300
350															67,9	,-	24,0	39,4			5,3	1,8	0,8	350
400															85,7		30,3	50,4				2,3	1,0	400
450																						2,9	1,2	450
500																						3,4	1,4	500
600																						4,7	2,0	600
700																							2,6	700
800																							3,3	800

Evite o uso dos valores abaixo da demarcação, a fim de não ocasionar excesso de perdas de carga, principalmente na tubulação de sucção, onde a velocidade máxima do líquido deve ser inferior a 2,0 m/s.

[•] Cálculos baseados na equação de Flamant para tubos PVC e na equação de Hazen-Williams para tubos em ferro fundido ou galvanizados. Os valores apresentados são resultantes de cálculos baseados nas médias dos diâmetros internos frequentemente comercializados.

[•] Em se tratando de tubos galvanizados ou ferro fundido, deve-se acrescentar 3% aos valores acima para cada ano de uso da tubulação.

[•] Considere que a pressão nominal dos tubos de PVC classe 15 é de 75 m.c.a conforme aplicação, para pressões acima destes valores, recomenda-se o uso de tubos de ferro fundido ou galvanizados.

[•] Para tubulações de irrigação PN 40 (DN35, DN50, DN75, DN100, DN125, DN150), PN 80 (DN50, DN75, DN100), PN 125 (DN100, DN150, DN200, DN250, DN300) e PN 60 (DN250, DN300) consulte respectivamente tabela de perda de carga do fabricante.

[•] a partir de 6" em PVC, a fonte é: www.alosolar.com.br - Manual Alosolar - Apêndice

^{• 6&}quot; de F°F°, a fonte é o Catálogo Técnico da Tupy.

Tabela de Perda de Carga em Conexões

TABELA DE COMPRIMENTOS EQUIVALENTES EM METROS DE CANALIZAÇÃO, PARA CÁLCULOS DAS PERDAS DE CARGA LOCALIZADAS

0	~ -	Diâmetro nominal x Equivalência em metros de canalização												
Cone	cao	Material	3/4"	1"	1¼"	1½"	2"	2½"	3"	4"	5"			
Curva 90°		PVC	0,5	0,6	0,7	1,2	1,3	1,4	1,5	1,6	1,9			
Curva 90°		Metal	0,4	0,5	0,6	0,7	0,9	1,0	1,3	1,6	2,1			
Curva 45°		PVC	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	1,1			
Curva 45°		Metal	0,2	0,2	0,3	0,3	0,4	0,5	0,6	0,7	0,9			
Joelho 90°		PVC	1,2	1,5	2,0	3,2	3,4	3,7	3,9	4,3	4,9			
Joeino ao		Metal	0,7	0,8	1,1	1,3	1,7	2,0	2,5	3,4	4,2			
Jacks 4F0		PVC	0,5	0,7	1,0	1,3	1,5	1,7	1,8	1,9	2,5			
Joelho 45°		Metal	0,3	0,4	0,5	0,6	0,8	0,9	1,2	1,5	1,9			
Tâ da Dassagam Diret	•	PVC	0,8	0,9	1,5	2,2	2,3	2,4	2,5	2,6	3,3			
Tê de Passagem Diret	d	Metal	0,4	0,5	0,7	0,9	1,1	1,3	1,6	2,1	2,7			
Tê de Saída Lateral		PVC	2,4	3,1	4,6	7,3	7,6	7,8	8,0	8,3	10,0			
ie de Salda Lateral		Metal	1,4	1,7	2,3	2,8	3,5	4,3	5,2	6,7	8,4			
Tê de Saída Bilateral		PVC	2,4	3,1	4,6	7,3	7,6	7,8	8,0	8,3	10,0			
ie de Salda Bilateral		Metal	1,4	1,7	2,3	2,8	3,5	4,3	5,2	6,7	8,4			
União		PVC	0,1	0,1	0,1	0,1	0,1	0,1	0,15	0,2	0,25			
Uniao		Metal	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,03	0,04			
Saída de Canalização		PVC	0,9	1,3	1,4	3,2	3,3	3,5	3,7	3,9	4,9			
Salua de Carialização		Metal	0,5	0,7	0,9	1,0	1,5	1,9	2,2	3,2	4,0			
Luva da Daduaão (*)		PVC	0,3	0,2	0,15	0,4	0,7	0,8	0,85	0,95	1,2			
Luva de Redução (*)		Aço	0,29	0,16	0,12	0,38	0,64	0,71	0,78	0,9	1,07			
Registro de Gaveta ou	. Fafara Abarta	PVC	0,2	0,3	0,4	0,7	0,8	0,9	0,9	1,0	1,1			
Registro de Gaveta ot	a Estera Aberto	Metal	0,1	0,2	0,2	0,3	0,4	0,4	0,5	0,7	0,9			
Regitro de Globo Abe	rto	Metal	6,7	8,2	11,3	13,4	17,4	21,0	26,0	34,0	43,0			
Regitro de Ângulo Ab	erto	Metal	3,6	4,6	5,6	6,7	8,5	10,0	13,0	17,0	21,0			
		PVC	9,5	13,3	15,3	18,3	23,7	25,0	26,8	28,8	37,4			
Válvula de Pé ou Crivo	0	Metal	5,6	7,3	10,0	11,6	14,0	17,0	22,0	23,0	30,0			
Válvula de	Horizontal	Metal	1,6	2,1	2,7	3,2	4,2	5,2	6,3	6,4	10,4			
Retenção	Vertical	Metal	2,4	3,2	4,0	4,8	6,4	8,1	9,7	12,9	16,1			

[•] Os valores acima estão de acordo com a NBR-5626/82 e Tabela de Perda de Carga da Tigre para PVC rígido e cobre, e NBR-92/80 e Tabela de Perda de Carga Tupy para ferro fundido galvanizado, bronze ou latão.

Ex.: 1¼" x 1" - 1½" x 1¼

^(*) Os diâmetros indicados referem-se à menor bitola de reduções concêntricas, com fluxo da maior para a menor bitola, sendo a bitola maior uma medida acima da menor.

Compatibilidade Química

Este estudo foi elaborado visando a seleção da bomba em função dos materiais a serem bombeados. Deve-se ressaltar que a correta seleção do bombeador se dará com uma informação precisa do líquido, ou mistura de líquidos, que se deseja trabalhar. A tabela a seguir foi desenvolvida com base em literatura de referência já consagrada no mercado e na pesquisa. Observe que esta seleção se complementa com a correta especificação do selo mecânico (Sob consulta).

Os materiais empregados por famílias de bombas (recomenda-se a consulta às estruturas das bombas e verificação nas CME quanto às mudanças nas matérias primas utilizadas) estão descritos na tabela abaixo.

MODELOS	MATÉRIA PRIMA UTILIZADA
AP-2R e AP-3C	Noryl e Nylon
CP-4R e CP-6R	Noryl e Nylon
CP-4C	Noryl, Nylon e ABS
Booster	Inox 304, Poliacetal e Noryl
HAD-W7C, CHS-17, e CHS-22	Noryl, ABS e Nylon
PF-17 e PF-22	Noryl, ABS, Nylon, Policarbonato e Polietileno
CAM 2, CAM W4, W6 e W9	Noryl, Nylon e Alumínio
CAM W16 (até 1 cv)	Alumínio e Ferro Fundido
CAM W14, W16 (acima de 1 cv) e W21	Alumínio e Ferro Fundido
CAM acima de 3 cv	Alumínio ou Ferro Fundido
CAM mod. 27-50, 63-90, 89-62, 105-50, 109-40, 15-70 e 17-120, 31-20, 51-30, 41-150, 91-100, 76-50, 56-40, 40-115 e 10-130	Alumínio ou Ferro Fundido
AAE 706 e 711	Alumínio
AAE 712, 717, 722 e 725	Alumínio e Ferro Fundido
SDE (todas)	Alumínio e Ferro Fundido
DS-4	Nylon, Noryl e Noryl GTX
DS-9	Alumínio, Aço inox 304, Nylon e Noryl
DS-56-40 e 76-50	Ferro Fundido
VAS 1050, 1053, 1060 e 1063	Alumínio, Ferro Fundido e Aço Galvanizado e Poliacetal
VAS 1101 e 1103	Alumínio, Ferro Fundido, Aço Galvanizado, Poliacetal e PVC
Multi-Estágio	Ferro Fundido, Inox 304 e Rotor de Alumínio ou Bronze

Observação: A tabela abaixo será complementada conforme a ocorrência de consultas sobre os produtos que ainda não tenham sido incluídos na mesma.

A - Excelente

B - Bom

C - Efeito moderado

D - Não recomendado

+ - Sem referência

DESCRIÇÃO	INOX 302	INOX 304	INOX 316	ALUMINIO	FERRO	AÇO CARBONO	PVC	NORYL	POLYACETAL	NATON	ABS	POLICARBONATO	GRAFITE (SELO)	CERÂMICA	VITON (SELO)	BUNAN	EPDM	Borracha Ntural
ACETONA	+	Α	Α	Α	Α	В	D	D	А	Α	D	D	Α	Α	D	D	Α	С
ÁCIDO ACÉTICO, GLACIA	+	С	Α	В	D	D	D	С	D	С	D	В	Α	Α	D	С	В	С
ÁCIDO ACÉTICO 20%	+	В	Α	В	D	D	D	Α	D	D	С	A	Α	Α	В	С	Α	В
ÁCIDO ACÉTICO 80%	+	С	В	В	D	D	D	Α	D	D	D	В	Α	Α	В	С	В	С
ÁCIDO ACÉTICO	+	С	В	В	D	D	D	Α	D	D	С	В	Α	Α	С	С	В	С
ÁCIDO BÓRICO	В	Α	Α	В	D	+	Α	Α	Α	Α	+	+	Α	Α	Α	Α	Α	Α
ÁCIDO CÍTRICO	+	В	Α	С	D	D	В	Α	В	Α	D	Α	Α	Α	Α	Α	Α	Α
ÁCIDO CLORÍDRICO OU MURIÁTICO	+	D	С	D	D	D	Α	D	D	D	+	+	D	+	+	+	+	+
ÁCIDO FÓRMICO	+	В	Α	Α	D	D	Α	Α	А	D	D	Α	Α	+	С	С	Α	С
ÁCIDO FOSFÓRICO	+	D	С	С	D	D	В	Α	D	В	В	Α	Α	+	Α	D	В	В
ÁCIDO NÍTRICO (5 - 10%)	+	Α	Α	Α	D	D	Α	Α	D	D	В	Α	Α	Α	Α	D	Α	D
ÁCIDO SULFÚRICO (< 10%)	+	D	В	D	С	D	Α	Α	D	С	В	Α	Α	Α	Α	Α	Α	Α
ÁCIDO SULFÚRICO (10 - 75%)	+	D	D	D	D	D	Α	Α	D	D	В	В	Α	Α	Α	В	А	С
ÁGUA DESMINERALIZADA	D	Α	Α	Α	В	С	+	+	+	+	+	+	+	+	С	+	В	+
ÁGUA DESTILADA	+	Α	Α	Α	С	D	Α	А	+	Α	В	A	Α	+	A	Α	A	А
ÁGUA FRESCA	+	Α	Α	В	С	С	В	A	+	A	A	A	A	Α	A	Α	Α	A
ÁGUA OXIGENADA OU PERÓXIDO DE HIDROGÊNIO (<10%)	+	A	В	A	D	D	A	В	D	D	+	+	+	A	A	D	A	C
ÁGUA DO MAR	C	В	В	В	D	-	В	А	A	A	_	A	A	В	A	A	A	A
ÁLCOOL ETÍLICO	+	А	А	В	В	В	С	A	A	A	В	В	A	A	A	В	A	A
ÁLCOOL ISOPROPÍLICO ÁLCOOL METÍLICO	+	В	В	В	A	A	A	A	A	D	+	A	A	A	A	В	A	A
	+	A	A	A	A	A	A	Α	A	В	D	В	A	A	С	A	A	A
AMÔNIA LÍQUIDA	+	В	Α	A	A	Α	A	+	D	В	+	D	A	Α	D	С	Α	D
AMÔNIA 10%	+	Α	Α	Α	Α	+	В	Α	D	Α	+	D	Α	Α	D	Α	Α	D
CLORETO DE CÁLCIO	С	Α	D	С	С	+	Α	Α	D	Α	В	A	Α	Α	Α	Α	Α	A
CLORETO DE MAGNÉSIO	+	D	D	D	D	С	В	Α	В	Α	В	A	Α	Α	Α	Α	Α	Α
CLORETO DE NÍQUEL	+	D	С	D	D	D	Α	Α	В	Α	Α	Α	Α	Α	Α	Α	Α	Α
CLORETO DE POTÁSSIO	С	Α	Α	В	В	В	Α	Α	Α	В	С	A	Α	Α	Α	Α	Α	Α
CLORO	+	Α	В	С	D	В	D	В	D	D	+	+	Α	+	Α	В	Α	D
DETERGENTE	+	Α	Α	В	+	Α	Α	Α	Α	Α	В	Α	Α	Α	Α	Α	Α	В
ÉTER	+	Α	Α	В	С	В	D	D	Α	D	D	+	Α	+	С	D	С	D
ETILENO GLICOL	В	В	Α	Α	В	В	Α	Α	В	Α	Α	В	В	Α	Α	Α	Α	Α
FLÚOR	+	С	С	Α	D	D	D	+	D	D	Α	С	С	+	С	D	Α	С
FORMOALDEÍDO 40%	+	Α	Α	В	В	D	Α	Α	Α	Α	Α	Α	Α	+	Α	В	Α	В
GASOLINA	+	Α	Α	Α	Α	В	С	D	Α	Α	D	Α	Α	+	Α	Α	D	D
HIDRÓXIDO DE ALUMÍNIO	+	Α	С	В	Α	+	Α	Α	Α	Α	В	В	Α	+	Α	Α	Α	D
HIDRÓXIDO DE SÓDIO (20%) (SODA CÁUSTICA)	+	В	В	D	Α	D	Α	Α	D	С	С	Α	С	D	С	Α	В	Α
HIDRÓXIDO DE SÓDIO (50%) (SODA CÁUSTICA)	+	Α	В	D	В	D	Α	Α	D	С	С	+	С	D	D	D	+	Α
HIDRÓXIDO DE SÓDIO (80%) (SODA CÁUSTICA)	+	Α	D	D	С	D	Α	Α	D	С	С	+	С	D	С	D	+	В
LEITE	+	Α	Α	Α	D	D	Α	Α	А	Α	В	Α	Α	Α	Α	Α	Α	Α
MAP (FOSFATO MONO AMÔNIO)	+	Α	Α	В	+	Α	Α	Α	В	Α	+	+	Α	Α	Α	Α	Α	Α
NITRATO DE CÁLCIO	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	А	Α
ÓLEO CÍTRICO	+	Α	Α	Α	D	D	В	Α	А	Α	D	A	+	+	Α	D	В	+
ÓLEO DIESEL	+	Α	Α	+	A	A	A	D	A	Α	+	A	Α	+	Α	Α	D	D
ÓLEO MINERAL	+	Α	Α	Α	+	В	В	Α	A	Α	А	В	Α	Α	Α	Α	D	D
ÓLEO VEGETAL	+	Α	Α	Α	Α	В	A	+	A	A	A	+	A	+	A	A	С	D
SUCO DE FRUTAS	A	A	A	В	D	D	Α	A	В	A	+	+	A	A	A	A	+	+
SULFATO DE ALUMÍNIO	+	В	В	В	D	D	A	A	В	A	A	A	A	A	A	A	A	A
SULFATO DE AMÔNIA	C	D	В	В	С	С			В	D		A		A	D			
							A	A			+		A			A	Α .	A
SULFATO DE COBRE (SOLUÇÃO 5%)	+	A	Α	D	D	+	A	A	В	D	+	A	A	A	A	A	+	С
SULFATO DE COBRE	В	В	+	+	+	+	Α	Α	+	С	+	A	+	Α	В	В	Α	+
SULFATO DE ZINCO	В	Α	A	D	C	D	С	A	С	A	+	A	Α	A	Α	A	Α	C
SULFATO DE FERRO	В	Α	С	D	D	D	A	A	В	D	+	A	A	A	A	В	+	A
SULFATO DE MAGNÉSIO	В	В	Α	В	С	В	Α	Α	Α	Α	+	A	Α	Α	Α	Α	D	С
SULFATO DE MANGANÊS	+	В	В	В	Α	В	С	Α	А	Α	В	A	Α	Α	Α	Α	Α	A
SULFATO DE NÍQUEL	В	В	В	D	D	D	Α	Α	В	Α	В	Α	Α	Α	Α	Α	Α	В
SULFATO DE SÓDIO	+	В	В	Α	В	В	Α	Α	В	Α	+	A	Α	Α	Α	Α	Α	В
SULFATO DE POTÁSSIO	В	Α	В	Α	В	В	Α	Α	В	С	+	A	Α	Α	Α	Α	Α	С
URÉIA	В	Α	Α	С	В	В	Α	D	А	Α	+	A	Α	Α	Α	D	D	D
URINA	+	Α	Α	В	Α	В	Α	Α	А	В	+	+	Α	+	Α	Α	Α	D
VINAGRE	+	Α	Α	D	D	С	В	Α	В	Α	Α	Α	Α	Α	Α	В	+ -	В

	BITO	DLAS DE	FIOS CO	NDUTO	RES DE C	OBRE, PA	ARA LIGA	AÇÃO DE	MOTOR	ES ELÉTI	RICOS M	ONOFÁS	ICOS*				
						Distând	ia do M	otor ao (Quadro (Geral de	Distribu	ição em	Metros				
Tensão da Rede (Volts)	Potência do Motor (cv)	10	20	30	40	50	75	100	150	200	250	300	350	400	450	500	600
(VOICS)	(64)							В	itola de 1	fios (mm	ı²)						
	1/6 - 1/4	2,5	2,5	2,5	2,5	2,5	2,5	4	4	6	6	10	10	16	16	25	25
	1/3 - 1/2	2,5	2,5	2,5	2,5	2,5	4	6	6	10	16	16	25	25	50	50	70
110	3/4 - 1	2,5	2,5	2,5	4	6	6	10	16	16	25	25	50	50	70	70	95
110	1½	2,5	2,5	4	4	6	10	10	16	25	50	50	70	95	95	120	120
	2	2,5	2,5	4	6	6	10	16	25	50	50	75	95	120	150	150	185
	3	2,5	4	6	6	10	16	25	50	75	75	95	120	120	185	240	240
	1/6 - 1/4	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	4	4	6	6	10	16	25
	1/3 - 1/2	2,5	2,5	2,5	2,5	2,5	2,5	2,5	4	4	6	6	10	10	16	25	25
	3/4 - 1	2,5	2,5	2,5	2,5	2,5	4	4	6	6	10	10	16	16	25	25	50
	1½	2,5	2,5	2,5	2,5	2,5	4	6	6	10	10	16	16	25	25	50	75
	2	2,5	2,5	2,5	2,5	4	6	6	10	10	16	16	25	25	50	75	75
220	3	2,5	2,5	2,5	4	4	6	10	16	25	50	50	75	75	120	120	150
	4	2,5	2,5	4	4	6	10	10	16	25	50	50	70	95	95	120	120
	5	2,5	2,5	4	6	6	10	16	25	25	50	70	70	95	120	120	150
	7½	2,5	4	6	6	10	16	16	25	50	50	70	95	120	120	150	185
	10	4	6	10	10	16	25	50	50	70	95	95	120	150	150	185	185
	12½	6	10	10	16	25	50	50	70	95	120	120	150	185	185		
·	4	2,5	2,5	2,5	2,5	2,5	4	6	10	10	16	16	14	25	25	50	50
	5	2,5	2,5	2,5	2,5	4	6	10	10	16	25	25	50	50	75	95	95
440	7½	2,5	2,5	2,5	4	6	10	10	16	25	50	50	75	75	95	95	120
	10	2,5	4	4	6	10	16	25	50	75	75	95	95	120	120	150	150
	121/2	4	6	6	16	16	25	50	50	75	95	120	120	150	150	185	185

^{*} Admite queda máxima de tensão de 4% conforme norma NBR 5410

	BITOLA	S DE FIO	S COND	UTORES	DE COE	RE, PAR	A LIGAÇ	ÕES DE	MOTOR	ES ELÉTI	RICOS TE	RIFÁSICO)S*				
						 Distânci								5			
Tensão de Rede (Volts)	Potência do Motor (cv)	10	20	30	40	50	75	100	150	200	250	300	350	400	450	500	600
(VOILS)	(CV)							Bi	tola de l	fios (mm	1 ²)			•	•		
	0,33 - 0,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	4	4	4	4	4
	0,75 - 1,0	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	4	4	4	4	4	6
	1,5 - 2,0	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	4	4	6	6	6	10	10
	3,0	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	4	6	6	10	10	10	10	16
	4,0	2,5	2,5	2,5	2,5	2,5	2,5	2,5	4	6	10	10	10	16	16	25	25
	5,0	2,5	2,5	2,5	2,5	2,5	2,5	4	6	6	10	10	16	16	16	25	25
	7,5	2,5	2,5	2,5	2,5	2,5	4	6	10	10	16	16	25	25	50	50	70
220	10,0	2,5	2,5	2,5	2,5	4	4	6	10	16	16	25	25	50	75	95	95
	12,5	2,5	2,5	2,5	4	6	6	10	10	16	25	25	50	75	95	95	120
	15,0	2,5	2,5	4	6	6	10	10	16	25	50	50	75	95	120	120	150
	20,0	2,5	4	6	6	10	10	16	25	50	50	75	95	120	120	150	150
	25,0	4	6	10	10	16	16	25	50	50	75	95	95	120	150	150	
	30,0	6	6	10	16	16	25	50	50	75	95	95	120	150	150		
	40,0	6	10	16	25	25	50	50	75	95	95	120	150	150			
	50,0	10	10	16	25	50	75	95	95	120	120	150	150				
	0,33 - 0,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	4	4
	0,75 - 1,0	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	4	4	4
	1,5 - 2,0	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	4	4	4	4	6
	3,0	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	4	4	4	6	6	6	10
	4,0	2,5	2,5	2,5	2,5	2,5	2,5	2,5	4	4	4	4	6	6	6	10	10
	5,0	2,5	2,5	2,5	2,5	2,5	2,5	4	4	4	4	6	6	6	10	10	10
	7,5	2,5	2,5	2,5	2,5	2,5	4	4	4	4	6	6	6	10	10	10	16
380	10,0	2,5	2,5	2,5	2,5	4	4	4	4	6	6	6	6	10	10	16	16
	12,5	2,5	2,5	2,5	4	4	4	4	6	6	6	6	10	10	16	16	16
	15,0	2,5	2,5	4	4	4	4	6	6	6	6	10	10	16	16	25	25
	20,0	2,5	4	4	4	6	6	6	10	10	10	16	16	16	25	25	50
	25,0	4	4	4	4	6	6	6	10	10	16	16	16	25	25	25	50
	30,0	4	4	6	6	10	10	10	16	16	16	25	25	25	50	50	70
	40,0	4	6	6	10	10	16	16	16	25	25	25	50	50	50	70	95
	50,0	6	6	10	10	16	16	25	25	25	50	50	50	70	70	95	95

^{*} Admite queda máxima de tensão de 4% conforme norma NBR 5410

Anotações

Anotações

Anotações

Anota	ações		
_			

Rio de Janeiro

Rua Jardim Botânico, 635 Gr. 303 - Jardim Botânico

CEP: 22470-050 | Rio de Janeiro | RJ

Tel.: 55 (21) 2529-9500 | Fax: 55 (21) 2529-9518

São Paulo

Rua Nove de Julho/72 / Sl 151/ Helbor torre Norte/ Santo Amaro

CEP 04739-010 | São Paulo | SP

Tel.: 55 (11) 5561-3364 | Fax: 55 (11) 5561-3364 ramal 2014

E-mail: dancorsp@dancor.com.br

UNIDADE FABRIL RIO DE JANEIRO

Av. Brasil, 49259 - Campo Grande

CEP: 23078-002 | Rio de Janeiro | RJ

Tel.: 55 (21) 3408-9292 | Fax: 55 (21) 3408-9252

UNIDADE FABRIL SANTA CATARINA

Rua Manoel Francisco da Costa, 4331 - João Pessoa

CEP: 89257-000 | Jaraguá do Sul | SC

Tel.: 55 (47) 3370-1217 | Fax: 55 (47) 3370-3347

UNIDADE FABRIL CEARÁ

Rua Cel. Ednardo Weyne, 441 - Mangabeira (CP 120)

CEP: 61760-970 | Eusébio | CE

Tel.: 55 (85) 3260-6110 | Fax: 55 (85) 3260-6115

